
TOO L S F OR P RO T E I N S C I E N C E

Using Integrative Modeling Platform to compute, validate,
and archive a model of a protein complex structure

Daniel J. Saltzberg1 | Shruthi Viswanath2 | Ignacia Echeverria1,3 |

Ilan E. Chemmama1 | Ben Webb1 | Andrej Sali1

1Department of Bioengineering and
Therapeutic Sciences, Department of
Pharmaceutical Chemistry, and California
Institute for Quantitative Biosciences,
University of California, San Francisco,
California
2National Center for Biological Sciences,
Tata Institute of Fundamental Research,
Bangalore, India
3Department of Cellular and Molecular
Pharmacology, University of California,
San Francisco, California

Correspondence
Daniel J. Saltzberg, Department of
Bioengineering and Therapeutic Sciences,
Department of Pharmaceutical Chemistry,
and California Institute for Quantitative
Biosciences, University of California, San
Francisco, CA 94158.
Email: saltzberg@salilab.org

Funding information
Division of Biological Infrastructure,
Grant/Award Numbers: DBI-175625, DBI-
1832184; National Centre for Biological
Sciences; National Institute of General
Medical Sciences, Grant/Award Numbers:
P41GM109824, R01GM083960

Abstract

Biology is advanced by producing structural models of biological systems, such

as protein complexes. Some systems are recalcitrant to traditional structure

determination methods. In such cases, it may still be possible to produce useful

models by integrative structure determination that depends on simultaneous

use of multiple types of data. An ensemble of models that are sufficiently con-

sistent with the data is produced by a structural sampling method guided by a

data-dependent scoring function. The variation in the ensemble of models

quantified the uncertainty of the structure, generally resulting from the uncer-

tainty in the input information and actual structural heterogeneity in the sam-

ples used to produce the data. Here, we describe how to generate, assess, and

interpret ensembles of integrative structural models using our open source

Integrative Modeling Platform program (https://integrativemodeling.org).
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1 | INTRODUCTION

To understand the function of a macromolecular assem-
bly, we must know the structure of its components and
their spatial arrangement. Direct experimental determi-
nation of such a complex structure is generally difficult,
as individual experimental techniques cannot always suf-
ficiently characterize the entire system. For example,
crystals of complexes suitable for X-ray crystallography
cannot always be produced. Cryo-electron microscopy
(cryo-EM) can be used to study large assemblies, but it is
often limited to worse than atomic resolution. Finally,

Abbreviations: BS3, chemical crosslinking reagent
bissulfosuccinimidyl suberate; DSS, chemical crosslinking reagent
disuccinimidyl suberate; EM, electron microscopy; GMM, Gaussian
mixture model; IMP, Integrative Modeling Platform; mmCIF, (.mmcif)
macromolecular Crystallographic Information File—a format for
archiving macromolecular experiments and their results; MRC, (.mrc)—
Medical Research Council format—a file format for storing molecular
densities; PDB, Protein Data Bank; PMI, Python Modeling Interface, a
module in IMP; RMF, (.rmf, .rmf3)—Rich Molecular Format, a file
format for storing hierarchical molecular data; RMSD, root mean
squared deviation; RMSF, root mean squared fluctuation.
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molecular biology, biochemistry, and proteomics tech-
niques, such as yeast two-hybrid and affinity purification
mass spectrometry, yield information about the interac-
tions between proteins, but not the positions of these pro-
teins within the assembly or the structures of the
proteins themselves.

One approach to solving structures of systems recalci-
trant to traditional methods is by combining multiple
types of input information, including from varied experi-
ments, physical theories, statistical inferences, and prior
structural models. By considering all information simul-
taneously, modeling in principle maximizes the accuracy,
precision, completeness, and efficiency of structure deter-
mination. The better the accuracy, precision, and com-
pleteness of a model, the larger the variety of questions
that can be addressed. For example, a model at a preci-
sion of 10 Å may be useful to identify protein interfaces
in a multi-protein complex, however, is not useful for
characterizing a small molecule binding pocket. Numer-
ous structures have already been solved using an integra-
tive approach, including the 26S proteasome,1 the yeast
spindle pole body core,2 and the yeast nuclear pore com-
plex.3 The approach can also be applied to systems that
exist simultaneously in multiple structural states, as dem-
onstrated by the two-state model of the PhoQ sensor his-
tidine kinase.4

The integrative modeling workflow proceeds through
four stages (Figure 1), described in detail elsewhere.5–7

Briefly, in the first stage, input information about the struc-
ture of the system is gathered. In the second stage, the rep-
resentation of the model (e.g., atomic or coarse-grained)
and the scoring function that ranks alternative models
based on input information are defined; the scoring func-
tion is generally a sum of individual spatial restraints, each
one dependent on a single data point. In the third stage,
models are sampled to find those that best satisfy the input
information; sampling is usually performed using stochas-
tic methods such as Monte Carlo sampling. Finally, in the
fourth stage, the set of models produced by sampling is
assessed. Once a model is assessed, it can be used to
address biological questions of interest.

Answering different biological questions requires
models of different precision.8 Stochastic sampling
methods often used in integrative structure modeling do
not output a single structure but, rather, an ensemble of
varied models that can be similarly consistent with the
input data. This model ensemble defines the precision of
the output model, but only if the resolution of sampling
(sampling precision) is better than the model precision.
In an analogy, sampling of a scoring function landscape
is akin to taking an optical microscope image, in which
only features larger than the resolution of the microscope
are meaningful. Thus, accurately estimating the model

and sampling precision are crucial for correctly inter-
preting a model.

To facilitate all computational aspects of integrative
structure determination, we developed the open source
Integrative Modeling Platform (IMP) package (https://
integrativemodeling.org/)9,10 for constructing and distrib-
uting integrative modeling protocols. The modularity and
flexibility of IMP allow us to mix-and-match alternative
representations, scoring function terms, and sampling
algorithms, which in turn facilitates addressing difficult
modeling problems. IMP allows representing molecules
at multiple resolutions, using spatial restraints from
almost any type of data, and searching for solutions by a
variety of sampling algorithms.

In a previous Tools in Protein Science article,7 we
demonstrated the Python Modeling Interface (PMI) of
IMP for defining model representation, adding data-
based restraints, sampling structural models, and cluster-
ing and analyzing output ensembles. In this iteration of
the tutorial, we discuss the rationale and implementation
of previously described techniques for estimating sam-
pling precision and model uncertainty (Figure 1, bot-
tom)5,11 and illustrate them by a sample integrative
structure modeling application.

2 | INTEGRATIVE MODELING OF
THE RNA POLYMERASE II STALK

In this tutorial, we model the positions and orientations
of the Rpb4 and Rpb7 subunits in the RNA polymerase II
stalk relative to the rest of the complex. The entire com-
plex was previously solved via X-ray crystallography at
3.8 Å.12 Here, we utilize biophysical data including chem-
ical cross-links, a negative-stain EM map, and physical
principles to localize the two subunits of the stalk in rela-
tion to the rest of the complex. Users may opt to perform
only the analysis portion of the tutorial by skipping
Section 2.2.

2.1 | Installing the required software

IMP is available for Linux, Mac, and Windows at
https://integrativemodeling.org/download.html. Source
code, nightly builds, and detailed installation instruc-
tions can be found at https://github.com/salilab/imp.
Running the tutorial requires a number of Python pack-
ages, including numpy, scikit-learn, hdbscan, and
matplotlib.13

IMP can also be used through Anaconda Python
(https://www.anaconda.com/products/individual). To install
IMP through Anaconda, use the following command:
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FIGURE 1 The four stages of integrative modeling. The integrative structure determination procedure proceeds through four stages.

First, we collect all information describing the system, including experimental data and physical laws. Second, the representation of the

system components is chosen, and each piece of input information is translated into a set of spatial restraints. Third, alternative

configurations of the system components are sampled. Fourth, the ensemble of models resulting from sampling are filtered by their fit to the

input data, the sampling and model precision computed, and the resulting model ensembles validated against information used and not used

in modeling. Should the model not be deemed satisfactory, by either being too imprecise or poorly fit, the process can be iterated, adding

more information or increasing sampling, until a satisfactory model is obtained. Steps in the fourth stage covered in this tutorial are outlined

with thick lines
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conda install -c salilab imp

The python dependencies noted above can be
installed using the following commands:

conda install numpy scikit-learn matplotlib pandas

conda install -c conda-forge hdbscan

conda install -c salilab pyrmsd

If using Anaconda, all python commands shown
below should use the Anaconda instance of Python
($ANACONDA_HOME/bin/python)

The code containing the data and scripts for the inte-
grative modeling of the RNA Polymerase II stalk can be
found at https://github.com/salilab/imp_analysis_
tutorial/. This repository should be downloaded to the
same computer where IMP is installed.

After downloading, navigate to the tutorial base direc-
tory and download required submodules:

git submodule init

git submodule update

2.2 | Generating models of RNA
polymerase II

The first three stages of integrative modeling of the RNA
polymerase II stalk are performed by moving to the
./ranpolii/modeling/ folder, modifying the
./run_rnapolii_modeling.sh file to point to the
users' python instance and running the following
command:

./run_rnapolii_modeling.sh out_dir N n_steps

where out_dir is the prefix of the output folder, N is
the number of independent samples to run, and
n_steps is the number of Monte Carlo frames to pro-
duce during sampling. On modern machines,
n_steps = 10,000 should take less than an hour to run.
N must be greater than 1 to perform sampling exhaustive-
ness testing and N should not exceed the number of com-
putational cores on the computer system used. The
system configuration in this tutorial has been found to be
sufficiently sampled with N ≥ 32 and n_steps ≥ 50,000.

The script runs N independent instances of the script
modeling.py, creating N output directories out_-

dir0, out_dir1, …, out_dir{N − 1}. Below, we
detail the workflow of this modeling script in the context
of the four stages of integrative modeling.

2.2.1 | Stage 1: Gathering data

The set of information used to create our model is con-
tained in the ./rnapolii/data folder (Figure 2). The

components of the system, protein chains and their com-
ponent residues, are defined in the FASTA file 1WCM.
fasta.txt. Two sets of chemical crosslinks14,15 are
defined in files polii_xlinks.csv and
polii_jura.csv (using BSS and DS3 crosslinkers,
respectively) (Figure 2b). A negative-stain EM density16

(EMDB 1883) is stored in emd_1883.map.mrc and a
corresponding Gaussian mixture model (GMM) to
approximate the density written in emd_1883.map.

txt (Figure 2c). The atomic-resolution coordinates of
each subunit, and the relative positioning of the compo-
nents other than Rpb4 and Rpb7 are found in the PDB
file 1WCM.pdb12 (Figure 2d). In addition to this experi-
mental information, we also utilize the physical princi-
ples of sequence connectivity and excluded volume.

2.2.2 | Stage 2: Defining representation
and constructing scoring function

We represent the RNA polymerase II complex in a multi-
scale fashion. Component residues are simultaneously
modeled by coarse grained beads of one-residue and up
to 10-consecutive-residues-per-bead. Additionally, the
density of each component is represented by a GMM for
use in the EM restraint.17 This multi-scale representation
allows restraints of various types to be applied at the most
appropriate resolution scales. A balance must be achieved
between choosing a representation that is sufficiently
detailed to capture structural features that are informed
by the data and important for model interpretation while
only representing degrees of freedom for which informa-
tion is available and at a resolution that allows for tracta-
ble structural sampling.18

The restraints are applied to individual resolution
scales as appropriate. Beads and GMMs of one or more
individual chains or domains are arranged into either a
rigid body or a flexible string, based on the crystallo-
graphic structures. In a rigid body, all beads and Gauss-
ians representing a structured domain have their relative
distances constrained during sampling, while in a flexible
string of beads they are restrained by the sequence con-
nectivity. This representation is defined by a topology file,
./rnapolii/data/topology.txt, the format of
which is discussed in a previous tutorial.7 After defining
the model representation, we build the restraints by
which the individual structural models will be scored
based on the input data.

In this system, we utilize four types of restraints. First,
we apply an excluded volume restraint (called
ExcludedVolumeSphere in the Python script), which
prevents beads from occupying the same space. For speed,
this restraint is applied to the low-resolution representa-
tion of the system (10 consecutive residues represented by
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each bead). Second, we restrain components of the system
adjacent in sequence by a ConnectivityRestraint.
Third, we apply a restraint on the density overlap of a
model configuration to the experimental 3D density map.
To reduce overhead, this restraint is evaluated by comput-
ing the overlap between the GMM representation of the
model to a GMM approximation of the experimental den-
sity.19 Finally, we utilize a chemical crosslink restraint
(CrossLinkingMassSpectrometryRestraint) to
restrain the distances between pairs of residues observed
in the two sets of crosslinking data. These restraints are
applied to the highest resolution bead modeled for each
residue endpoint and are evaluated at upper bound of
21.0 Å, which corresponds to the sum of the crosslinking
reagent spacer length (11.4 Å) and the two crosslinked res-
idue side chains. Restraint scores are scaled by a weight
term to balance the contribution of each restraint to the
overall model score. As a heuristic, weights of 1.0 were
applied to the excluded volume, connectivity, and
crosslinking restraints while a weight of 80.0 was applied
to the electron density restraint. The scoring function is
the sum of all restraints.

2.2.3 | Stage 3: Sampling

The system is sampled using Markov Chain Monte
Carlo20 with simulated annealing and Gibbs Sampling
replica exchange21 using the number of steps defined
above. Using the ./run_rnapolii_modeling.sh
script, we initialize multiple independent sampling runs,
each starting with random initial configurations, to more
efficiently search the scoring function landscape and
allow for convergence testing.

2.3 | Analyzing output ensembles of
RNA polymerase II

To avoid an overinterpretation of a model ensemble, we
need to estimate a model precision (i.e., model uncer-
tainty).5,22 Only model features larger than model uncer-
tainty are likely modeled accurately and can thus be
interpreted. The model precision can be defined as the
variability of the complete ensemble of all good-scoring
models. Thus, the model precision can be computed

FIGURE 2 Data used in constructing RNA-Polymerase II stalk model. (a) Primary sequences of all subunits in the FASTA format.

(b) Chemical cross-linking data, which yields a list of proximate residue pairs. (c) A 3D negative-stain EM density map of the entire complex.

(d) X-ray crystal structures of each of the subunits. Figure published in a previous Protein Science tutorial7
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accurately only by enumeration of all models. The model
precision quantifies the uncertainty in the model due to
uncertainty in the input information. It can be improved
most obviously by increasing the amount of the input
information. In practice, we compute an estimated model
precision using the variability of the ensemble of sampled
good-scoring models. The accuracy of this estimate
depends on the completeness of sampling, which we esti-
mate by computing a sampling precision.

We define the sampling precision as the difference
between two sets of sufficiently good-scoring models,
each one independently obtained by a stochastic sam-
pling method.11 The sampling precision can be improved
by increasing the number of computed models and, possi-
bly, by simplifying model representation. When the sam-
pling precision is comparable to or greater than the
model precision, the model uncertainty results only from
the relative lack of input data and actual structural het-
erogeneity in the samples used to produce the data, not
the lack of structural sampling. In practice, we compute
the sampling precision by finding the smallest clustering
threshold that produces a statistically similar proportion
of models among all clusters, as computed by three
criteria for assessing statistical similarity (below).

2.3.1 | Estimating sampling precision

Here, we estimate the sampling precision for the set of
models included in the tutorial repository (8 individual
runs of 5,000 steps each) in the ./rnapolii/analysis
directory. In addition, we illustrate the results of a more
complete sampling protocol (32 individual runs of
50,000 steps each) contained in the ./rnapolii/
analysis_extensive directory. The set of models
from the latter sampling protocol is not included in the tuto-
rial repository due to the large disk space requirement (33G).

This process takes three steps. In the first step, we
split our set of trajectories into two independent sets,
identify models that sufficiently satisfy the input
restraints (good-scoring models) and cluster these models
based on the scores of individual restraints. In the second
step, we extract the good-scoring models from each clus-
ter identified in the first step. In the third step, we com-
pute the sampling precision for each cluster of good-
scoring models.

For the first step, we navigate to the directory to ana-
lyze the set of eight independent modeling runs provided
in./rnapolii/modeling/example* using the fol-
lowing command:

python ./run_analysis_trajectories.py ../modeling/

example

where ../modeling/ is the path to the folder con-
taining the output directories and example is the prefix
for the output directories to be analyzed. This initial anal-
ysis takes up to a few minutes on a single processor for
the number of samples in the example directories and
scales linearly with the total number of steps over all
sampling runs. The run_analysis_trajectories.
py script must be modified to analyze the restraints spe-
cific to other modeling setups. Documentation for analyz-
ing other standard IMP restraints and custom restraints
can be found at https://github.com/salilab/PMI_analysis.

We first assess for sufficient sampling and fit to input
data by clustering based on total and individual restraint
scores. This assessment is a fast and convenient way to
assess millions of models before proceeding to more com-
putationally expensive structure-based analysis. In this
step, the equilibration of score terms in each Markov
chain is computed;23 models produced after equilibration
of all scores are pooled and clustered using HDBSCAN,24

an assumption-free, density-based hierarchical clustering
algorithm particularly good at defining oddly-shaped
clusters.

The script outputs a large number of data files and
plots into the model_analysis folder. We first exam-
ine model_analysis/plot_clustering_scores.
png to observe the distributions of the various scoring
function terms (Figure 3). Distinct, non-overlapping clus-
ters of solutions, as observed in Figure 3a in the
XLs_sum parameter (total crosslink score), can indicate
insufficient sampling; there are two distinct sets of solu-
tions with different sets of crosslinks satisfied. In compar-
ison, analysis of the more extensive sampling protocol
from analysis_extensive (Figure 3b) shows a con-
tinuous distribution, indicating a more complete
sampling.23,25,26

This protocol also outputs information about the crosslink
satisfaction for each cluster. The mean crosslink distance
for all crosslinks is plotted in model_analysis/
plot_XLs_distance_histogram_cl1.pdf (Figure 4a).
Of the 273 total crosslinks, 13 are considered
“unsatisfied” in cluster 1 (a crosslink is unsatisfied if no
model in a set has a crosslink distance of less than
30 Å). These unsatisfied crosslinks can be identified in
the distance distribution for each individual crosslink:
model_analysis/plot_XLs_distance_distrib

utions_cl1.pdf (Figure 4b).
The model_analysis/summary_hdbscan_clus

tering.dat cluster file shows numerical results of
score-based clustering (Table 1), including the number of
models in each of the two subsets of models (A and B)
and the average scores for each restraint. There are two
large clusters, one of which satisfies the restraints slightly
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better than the other (similar to what is observed in
Figure 3a). The third cluster is minor and ignored. From

this point, we continue analysis with cluster 1; other clus-
ters can be analyzed similarly.

FIGURE 3 Scores plots for undersampled and extensively sampled systems. Histograms of individual scores are on the diagonal and

2D score plots are on the off-diagonals. The colors in the 2D plots represent the different clusters. (a) The undersampled modeling scores

plots shows two distinct clusters of scores, indicating that the independent simulations did not converge on the same solution. (b) The plot of

the extensively sampled modeling shows a continuous distribution of scores that suggests more complete sampling

FIGURE 4 Evaluation of crosslink satisfaction. (a) Histogram of mean crosslink distances for Cluster 0 showing that the majority of

observed crosslinks are satisfied at the 30 Å cutoff value (yellow line). (b) Individual crosslink distance distributions for a subset of crosslinks

used to model the complex. The identity of each crosslink is noted in the X-axis label in the format “Protein1:Residue1 j Protein2:Residue2”.
The total range of crosslink distances in the cluster are shown by the whiskers while the 25th to 75th percentile is represented by the blue

boxed. The median crosslink distance is represented by an orange line. The 30 Å cutoff value is shown in the green line. Crosslinks that show a

fixed distance (orange dashes) have both residue endpoints located in the rigid body subcomplex of this model. The figure containing all

crosslink distributions is found in ./rnapolii/analysis /model_analysis/ plot_XLs_distance_distributions_cl1.pdf
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The second step is initiated by the following
command:

python ./run_extract_models.py ../modeling example 1

where ../modeling is the base output directory,
example is the output directory prefix, and 0 is the clus-
ter identity to be extracted. Extracting the �11,000
models from the tutorial example takes up to a few
minutes on a single processor.

This script extracts the coordinates and total scores
for all of the models from the chosen cluster and sepa-
rates them into the A and B subsets in preparation for
structural clustering. Because structure-based clustering
is CPU and memory intensive, at most 30,000 models are
randomly chosen from each cluster. Model coordinates
(A_models_clust1.rmf3 and B_models_clust1.

rmf3) and model scores (A_models_clust1.txt, and
B_models_clust1.txt) for the A and B subsets of
models are written to ./model_analysis.

In the final step, we estimate the sampling precision
using the following command:

imp_sampcon exhaust -n rnapol \

–rmfA ./model_analysis/A_models_clust1.rmf3 \

–rmfB ./model_analysis/B_models_clust1.rmf3 \

–scoreA ./model_analysis/A_models_clust1.txt \

–scoreB ./model_analysis/B_models_clust1.txt \

-d density_rnapol.txt \

-m cpu_omp -c 4 \

-gp -g 2.0

The script clusters models using a nearest-neighbor
algorithm at increasing cluster thresholds (RMSD values)
and computes each of the three criteria for cluster simi-
larity. The options specified are: a name for the system
that is used to prefix the output files (option n), the files
containing the models and scores generated in step
2 (options rmfA, rmfB, scoreA, scoreB), the file, list-
ing the domains for density map creation (option -d

density_rnapol.txt, format described below), the
parallelization mode for the expensive pairwise RMSD
calculation (option m), the number of cores used (option
c), and a flag to generate plots using gnuplot (option gp,
only if gnuplot is installed). The grid size (option g)

defines the step size in Å for increasing the cluster
threshold; each cluster threshold from the minimum to
the maximum RMSD of the ensemble is tested, so for
larger more structurally diverse systems, setting a value
of 5 or 10 Å significantly decreases computational time at
the expense of precision in the estimate of the sampling
precision. Computing the sampling precision for the tuto-
rial modeling example using the above protocol takes a
few hours to complete on a typical workstation.

One output of this protocol is localization densities of
system components. The localization density is the proba-
bility of finding a protein at each position in space, given
a set of superposed models of the modeled system; this
set is often either the entire ensemble or only a cluster of
sufficiently good-scoring models. Most often, the localiza-
tion density is provided separately for discrete subunits
or their domains. The file density_rnapol.txt is
used to define the system components, either by their
molecule name (e.g., “Rbp4”) or by a tuple defining the
molecule name as well as the first and last residues,
(e.g., [“Rbp4”, 5, 100]). The components in each locali-
zation density are noted in a Python list and localization
named in a dictionary. For this example, we create three
localization densities: one for each of the two moving
subunits, Rbp4 and Rbp7, and one for the remainder of
the complex:

density_custom_ranges={"Rbp4":["Rbp4"],"Rbp7":

["Rbp7"], "Rigid_Body":["Rbp1", "Rbp2", "Rbp3",

"Rbp5", "Rbp6", "Rbp8",

"Rbp9","Rbp10","Rbp11","Rbp12"]}

Additionally, there are options for changing the run
folder, model file format (RMF or PDB), file names for
the model scores, and localization density voxel size. For
models that are not restrained via an EM density map,
models should be superposed before clustering, by
including the –align option in the above command.
The resolution for the localization density is set using the
–density_threshold option and should be chosen at
a resolution above the known or expected sampling preci-
sion (default = 20.0 Å). Advanced options include run-
ning the protocol on selected subunits, considering
ambiguity in RMSD calculation by listing subunits with
multiple copies, and aligning the models before RMSD

TABLE 1 Score-based clustering results. Individual restraint scores and populations for each of the three clusters determined from the

first step of sampling precision estimation (Section 2.3.1)

Cluster Total_Score EV_sum XLs_sum GaussianEMRestraint N_models N_A N_B

1 601.49 303.43 146.67 147.20 11,282 4,809 6,473

0 625.75 333.80 142.70 144.37 2,551 2,515 36

−1 628.66 326.14 146.15 150.48 2,167 1,476 691
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calculation. The IMP documentation (https://
integrativemodeling.org/2.13.0/doc/) contains the com-
plete list of options for this protocol.

The three criteria for cluster similarity are computed
at each clustering threshold, tabulated in rnapol.
ChiSquare_Grid_Stats.txt and shown visually in
rnapol.ChiSquare.pdf (Figure 5a). The three criteria
are (a) a p-value of greater than 0.05 in the χ2 test for
homogeneity of proportions, which indicates no statistically
significant difference between the sample distributions
among all clusters, (b) a value in the χ2 test of Cramer's V
less than 0.1, which indicates an insignificant magnitude of
difference between the sample distributions, and (c) the
population of models in significant clusters, containing

more than 10 models, is greater than 80%. For this example,
the smallest clustering threshold that satisfies all three tests
is 12.6 Å; this value is reported in the output file rnapol.
Sampling_Precision_Stats.txt.

In this example, the small number of computed
models results in a relatively low sampling precision.
The more extensive sampling protocol results in a sig-
nificantly higher sampling precision of 8.6 Å
(Figure 5b).

The set of models are then clustered at the sampling
precision and models from each individual cluster placed
in folders cluster.0, cluster.1, and so on. The total
number of models and the population of the A and B sub-
samples for each cluster are reported in rnapol.

FIGURE 5 Determination of sampling precision and visual validation for under and rigorously sampled models. The results of the

three sampling convergence tests at multiple clustering thresholds are plotted in panel (a) for the undersampled set of models, showing a

sampling precision of 12.6 Å and (b) for the rigorously sampled set, showing a sampling precision of 8.6 Å. C) Comparison of the two

independent sets of in localization densities of Rpb4 (green volume) and Rpb7 (purple volume) for (c) the undersampled model set shows

significant differences between the two, while for D) the pair generated from the extensively sampled set appears identical
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Cluster_Population.txt. For this example, one
cluster is found to define our system.

2.3.2 | Estimating model precision and
its comparison to sampling precision

We estimate the model precision of each output cluster
by computing the average RMSD between each configu-
ration in the cluster and the cluster centroid configura-
tion (RMSF). The estimated model precision for the one
cluster found above is 8.7 Å, reported in rnapol.Clus-
ter_Precision.txt. To compare this value numeri-
cally to our estimated sampling precision, we first
multiply it by 1.4, to reflect the general approximate rela-
tionship between RMSD and RMSF for globular pro-
teins.27 Our scaled model precision is 12.2 Å; this is
slightly less than our sampling precision of 12.6 Å.

We note that the estimated sampling precision defines
the minimum distance at which features in the model can
be interpreted. Interpreting a model in terms of its sam-
pling and model precision, similar to interpreting an EM
map in terms of its resolution, is meant as a general guide-
line to inform the length scale at which the position of
model components is reliable. Thus, we may conclude that
the sampling is sufficiently exhaustive to justify inter-
preting the features of the output model cluster. Alterna-
tively, if resources allow, we may decide to perform
additional sampling to improve the sampling precision.

2.3.3 | Interpreting and visualizing
individual model clusters

After computing the sampling precision, identifying the
cluster models and estimating the model precision, we
can use this information to interpret our model at the
appropriate resolution scale. Our model now consists of a
single ensemble of configurations (in cluster.0), a
sampling precision (12.6 Å) and estimated model preci-
sion (8.7 Å).

Individual models and the entire model ensembles
can be viewed in ChimeraX.28 The localization density
for each individual model component defined in
density_rnapol.txt is output in a .mrc file in
cluster.0. The centroid structure of the cluster is out-
put in cluster_center_model.rmf3. Localization
densities and centroid models for both the A and B sets
of independent samples are also computed and deposited
in the Sample_A and Sample_B directories in the clus-
ter folder.

As a final validation step, the Sample_A and
Sample_B localization densities can be compared

visually and via their cross-correlation coefficient (CCC).
The independently computed localization densities from
the undersampled set (Figure 5c) have relatively low
CCC values, 0.92 for Rbp4 and 0.91 for Rbp7, and are
qualitatively different. The set from analysis_extensive
(Figure 5d) has higher CCC values, 0.98 for Rpb4 and
0.97 for Rpb7, indicative of the higher sampling precision
of that model.

The final, complete, model from analysis_exten-

sive can be visualized by opening model files
cluster_center_model.rmf, Rpb4.mrc and
Rpb7.mrc from the ./analysis_extensive/
cluster.0/ folder in ChimeraX (Figure 6). The locali-
zation densities for Rpb4 and Rbp7 are well-delineated,
indicating that we have found their general position
within the complex. Identification of the exact binding
interfaces is beyond the resolution range of our model
and should not be inferred.

While in this example our analysis resulted in a single
cluster, often multiple significant clusters are obtained

FIGURE 6 Integrative model of the RNA Polymerase II stalk.

The final integrative model for the RNA polymerase II stalk,

determined to 8.7 Å precision, is visualized by the localization

densities of subunits Rpb4 (green volume) and Rpb7 (purple

volume) in relation to the rigid structure of the polymerase base

(gray volume). A single representative model of the ensemble, the

centroid model, for the two moving components is shown in sphere

representation with the same colors. Figure prepared using

Chimera
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and should be considered when interpreting the model.
As noted above, this model uncertainty is generally a
consequence of both a relative lack of input information
and actual heterogeneity in the samples used to generate
the data for modeling.

Should the model(s) be sufficient to answer the bio-
logical question or used in a publication, the model(s)
and modeling protocol should be archived so others can
reproduce or improve the model with additional
information.

2.4 | Archiving models and depositing
into the wwPDB

With a validated and interpreted model in hand, the final
step is archiving the model(s) along with the data and
protocols used to create them into the nascent worldwide
PDB database for integrative structures (pdb-dev.wwpdb.
org).29 The mmCIF format has been extended to describe
all aspects of integrative modeling. To produce an
mmCIF file suitable for deposition, the python-ihm

module must be installed (Methods). Navigate to the
tutorial repository's ihm-deposition folder, and run
the following command:

python create_ihm_cif_file.py

which will output tutorial_deposition.cif.
A full tutorial describing the deposition of integrative

models can be found at https://integrativemodeling.org/
tutorials/deposition/. Descriptions of the mmCIF exten-
sions specific for integrative models can be found at
http://mmcif.wwpdb.org/dictionaries/mmcif_ihm.dic/
Index/ and an overview of the Python library used to
create these files from IMP output can be found at
https://python-ihm.readthedocs.io/en/latest/.

While the focus of this tutorial is on estimating sam-
pling and model precisions, a complete validation also
includes validation of the input data quality, validation
of the model by the data used to compute it, validation
of the model by the data not used to compute it, in addi-
tion to estimating sampling and model precisions.30 A
complete pipeline for these assessments is being con-
structed under the auspices of the wwPDB and will
eventually be used as part of model deposition into
the PDB.

3 | CONCLUSIONS

Structural models of protein complexes are a powerful
tool for advancing our knowledge about their function

and evolution. A model needs to be validated before its
interpretation, followed by its deposition. The IMP pro-
gram facilitates generation, validation, and deposition of
integrative models. A key aspect of a model is an estimate
of its uncertainty (precision); knowledge of model uncer-
tainty enables a user to avoid its overinterpretation.

4 | MATERIALS AND METHODS

The scripts and libraries used to complete this tutorial
are contained in the IMP analysis tutorial GitHub reposi-
tory: https://github.com/salilab/imp_analysis_tutorial

Additional software is required to complete the tuto-
rial protocols:

• IMP version 2.13.0—https://integrativemodeling.org/
• Python-ihm—https://github.com/ihmwg/python-ihm
• UCSF ChimeraX—https://www.cgl.ucsf.edu/chimerax/

download.html
• RMF reader for ChimeraX—https://cxtoolshed.rbvi.

ucsf.edu/apps/chimeraxrmf

ACCESSIBILITY AND ACCESS
All data, scripts and software used for modeling are freely
available in the GitHub repositories and links described
in Materials and Methods.
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