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Integrative structure determination of macromolecular assemblies
requires specifying the representation of the modeled structure, a
scoring function for ranking alternative models based on diverse
types of data, and a sampling method for generating these models.
Structures are often represented at atomic resolution, although ad
hoc simplified representations based on generic guidelines and/or
trial and error are also used. In contrast, we introduce here the
concept of optimizing representation. To illustrate this concept, the
optimal representation is selected from a set of candidate represen-
tations based on an objective criterion that depends on varying
amounts of information available for different parts of the structure.
Specifically, an optimal representation is defined as the highest-
resolution representation for which sampling is exhaustive at a
precision commensurate with the precision of the representation.
Thus, themethod does not require an input structure and is applicable
to any input information. We consider a space of representations in
which a representation is a set of nonoverlapping, variable-length
segments (i.e., coarse-grained beads) for each component protein
sequence. We also implement a method for efficiently finding an
optimal representation in our open-source Integrative Modeling
Platform (IMP) software (https://integrativemodeling.org/). The ap-
proach is illustrated by application to three complexes of two subunits
and a large assembly of 10 subunits. The optimized representation
facilitates exhaustive sampling and thus can produce a more accurate
model and a more accurate estimate of its uncertainty for larger
structures than were possible previously.

coarse graining | multiscale modeling | integrative structure modeling |
structural biology | model selection

Integrative structure determination is an approach to charac-
terizing the structures of large macromolecular assemblies that

relies on multiple types of input information, including data from
various experiments, physical theories, statistical analyses, and
previous models (1, 2). Thus, by simultaneously considering all
available information, it maximizes the accuracy, precision,
completeness, and efficiency of structure determination.
Integrative modeling can often produce a structure for systems

that are refractive to traditional structure determination methods
(2), including X-ray crystallography, EM, and NMR spectroscopy.
For example, the structure of the 26S proteasome was based on an
EMmap of the complex, proteomics data, and comparative protein
structure models of the constituent proteins (3); the molecular ar-
chitecture of the yeast spindle pole body core was based on data
from in vivo FRET, small-angle X-ray scattering (SAXS), X-ray
crystallography, yeast two-hybrid analysis, EM, and genetic experi-
ments (4); the architecture of the 552-protein yeast nuclear pore
complex at subnanometer precision was based on information from
native mass spectrometry, residue-specific chemical cross-linking,
cryoelectron tomography, immuno EM, X-ray crystallography,
NMR spectroscopy, integrative structures of subcomplexes, SAXS,
comparative modeling, and bioinformatics predictions of mem-
brane binding domains (5).
Integrative structure determination generally proceeds through

four stages (1). The first stage involves collecting all information that
describes the system of interest. Second, a suitable representation
for the system is chosen depending on the quantity and resolution of

the available information. The available information is then trans-
lated into a set of spatial restraints on the components of the system.
The spatial restraints are combined into a single scoring function
that ranks alternative models based on their agreement with input
information. Third, the alternative models are sampled to produce
an ensemble of models that are as consistent as possible with the
input information. Finally, the structures and input information are
analyzed and validated (5, 6). Estimates of model uncertainty are
essential for informing potential future experiments and modeling
calculations, as well as valid applications of the model.
Here we were concerned with optimizing the representation of

the modeled structure. The representation is perhaps the least well-
studied aspect of integrative modeling. Models of large macromo-
lecular assemblies often cannot be sampled efficiently when rep-
resented at atomic resolution; therefore, simplified, coarse-grained
representations are needed. More specifically, the representation of
a structure is defined by all the structural variables that need to be
determined based on input information, including the assignment
of system components to geometric primitives, such as points,
spherical beads, tubes, Gaussians, and probability densities (6).
While integrative models are often represented as a single set of
atomic coordinates, more general representations that encode en-
sembles of multiscale, multistate, and time-ordered models are also
used (2, 7). Model representations in integrative structure modeling
are currently chosen based on generic guidelines and/or trial and
error (3–5). This ad hoc approach appears to be unsatisfactory,
because selecting a representation is one of the most important
decisions in modeling; for example, it directly determines the
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sampling efficiency and sets a lower bound on the interpretability of
the model. An uninformed choice of representation can result in an
inaccurate structure, inaccurate estimation of its uncertainty, and
misleading interpretation of input information, resulting for in-
stance, from insufficient sampling.
Coarse-grained representations have also proven useful in other

molecular modeling studies, such as molecular dynamics simula-
tions of lipid bilayers, structured, and disordered proteins (8–13).
These coarse-grained representations were optimized based on
relative entropy minimization (14), matching forces from atomistic
trajectories (15), matching essential dynamics inferred from
atomistic trajectories (16) or elastic network models (17, 18),
Bayesian inference (19), inverse Boltzmann approaches (20,
21), reproduction of partitioning free energies (22, 23), thermal
fluctuations (24), quasi-chemical approximations (25), protein
shape (26, 27), rigidity (28), and even kinetic information (29–32).
These methods generally require an atomic structure of the system
to compute its coarse-grained representation. In contrast, no initial
structure is available in typical integrative modeling applications,
and thus these representation optimization methods are not directly
applicable to integrative structure modeling.
The choice of model representation is an example of a model

selection problem in statistics (33), in which we choose from a set
of candidate representations based on an objective criterion.
Here we address two questions: how to determine an optimal
representation for integrative structure modeling and how to
find it. To answer these questions, we first introduce the concept
of optimizing representations based on an objective criterion
that depends on varying amounts of information available for
different parts of the structure. We define an optimal repre-
sentation as the most detailed representation for which exhaus-
tive sampling of models is feasible. To illustrate the concept, we
then optimize over the space of coarse-grained bead represen-
tations, where a bead corresponds to a number of contiguous
residues in a protein chain, aiming to find a single, optimal
coarse-grained representation for a structure, given input in-
formation (Fig. 1). Unlike the current schemes, which generally
rely on ad hoc a priori fixed, uniform-sized beads (3–5), the
proposed scheme optimizes the bead sizes based on the poten-
tially variable density of input information for different parts of
the structure, resulting in beads of variable sizes. Using sample
complexes, we show that the optimal coarse-grained represen-
tations can be efficiently computed and used for sampling.
Therefore, our approach, by construction, results in represen-
tations that facilitate translation of data into restraints and
interpretation of the model, while corresponding exhaustive
sampling can produce a more accurate model and a more ac-
curate estimate of its uncertainty for larger systems than were
possible previously.

Results
We begin by introducing the requirements of a representation,
followed by defining an optimal representation. We then com-
pare optimal representations with other representations for
sample binary complexes and show that they can be obtained
efficiently. We further illustrate the method by applying it to a
more challenging 10-protein complex, which also shows that
optimal representations are better than ad hoc representations.

Requirements of a Representation. To facilitate integrative structure
modeling, a representation might be chosen to aid the translation of
data into spatial restraints, sampling completeness and efficiency,
and/or interpretation of the resulting model. First, different kinds of
data are most accurately and efficiently imposed on different model
representations, with the goal of accurately ranking alternative
models. For example, a chemical cross-link between two lysine side
chains naturally restrains the distance between these two side
chains, while an affinity copurification of two proteins naturally
restrains the distance between the proteins. Second, large macro-
molecular assemblies cannot be sampled at high (e.g., atomic)
resolution in a reasonable amount of time; optimizing the repre-
sentation may allow us to sample models efficiently and exhaus-
tively, which is a prerequisite for producing accurate structures and
accurate estimates of their uncertainty (34). Finally, the represen-
tation should facilitate interpretation of the model; a high-resolution
model might be required for certain analyses (e.g., analyzing enzyme
kinetics), while a coarser representation may be more useful for
others (e.g., determining the symmetry of a viral coat). Additional
optimality criteria might be proposed, such as the smoothness and
funnel shape of the scoring function landscape. Whether multiple
criteria can be satisfied simultaneously, and even which single crite-
rion is generally most useful, are unclear.

Prerequisite Definitions. Here we define some key terms. A coarse-
grained representation is defined as a mapping of each atom in the
structure to a coarse-grained bead. A fine-grained representation
may assign a single atom to a small bead, while a coarse-grained
representation may assign all atoms in a number of consecutive
residues to a larger bead. A coarse-grained model is then defined by
spatial coordinates of the beads. The resolution of a representation
is defined as the average number of residues per bead. The pre-
cision of a representation is defined as the bead diameter.
A good-scoring model is defined as a model that satisfies the

input information sufficiently well. The model precision is defined
as the geometrical variability among the good-scoring models. Ex-
haustive sampling of good-scoring models is a prerequisite for ac-
curate modeling and assessment of model precision. Sampling is
exhaustive at a certain precision (i.e., the sampling precision) when
it generates all sufficiently good-scoring models at this precision.
There is always a precision at which any sampling is exhaustive; for
example, even a single sampled structure provides an exhaustive
sample at a precision worse than the scale of the structure. In other
words, because sampling large macromolecular structures in con-
tinuous space is often necessarily stochastic, we can only aim to find
representative good-scoring models, not all good-scoring models;
these representative good-scoring models sample the space of all
good-scoring models at the sampling precision. The sampling pre-
cision is a lower limit on the model precision. We use the following
procedure to compute the sampling precision in our protocol for
assessing sampling exhaustiveness (34). Independently and sto-
chastically sampled good-scoring models are divided into two
model samples, and models from both samples are clustered to-
gether based on their structural similarity. The sampling precision is
then computed as the largest allowed root mean square deviation
(rmsd) between the beads of the cluster centroid model and model
within any cluster in the finest clustering for which each sample
contributes models proportionally to its size (considering both the
significance and magnitude of the difference) and for which a
sufficient proportion of all models occur in sufficiently large clus-
ters. Cluster precision is defined by the rmsd between the beads of
the cluster centroid model and the remaining models in the cluster.

A B C

t

Fig. 1. Optimizing representation of integrative models. Three represen-
tations of a 72-residue domain of yeast endocytic adaptor protein Sla1 (PDB
ID code 3IDW) (37) are shown: the atomic representation (A) (gray ball-and-
stick), a highly coarse-grained, uniform-resolution representation (B) (yellow
beads), and an optimal, variable-resolution representation (C) (pink beads).
The backbone is indicated by a gray ribbon. Distance restraints are shown as
red lines. A region of interest for “biological” analysis (e.g., an important
binding site or target for mutagenesis) is shown in a green box. The times for
complete sampling (t) of models corresponding to each representation are
shown as black horizontal bars.
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Definition of Optimal Representation. Our aim is to find a single,
optimal coarse-grained representation for a structure, given any kind
of input information for structure determination. We define the op-
timal representation, r*, as the highest-resolution representation for
which sampling is exhaustive at a precision commensurate with the
precision of the representation (Methods). Two alternative optimality
criteria were also considered (SI Appendix, Supplementary Text).
First, we maximize the representation resolution (subject to

sampling exhaustiveness) because it is easier to convert high-
resolution models to low-resolution models than vice versa. As a
result, the representation is useful for formulating restraints and
interpreting the model as is, or it can be converted relatively
efficiently to a more coarse-grained representation if necessary.
Second, we also require that the optimal representation facilitate

exhaustive sampling. The representation precision is a lower bound
on the sampling precision. Ideally, the desired (highest) sampling
precision is equal to the representation precision. On one hand,
sampling is needlessly inefficient when the representation precision
is much higher than the sampling precision (e.g., flexibly fitting an
atomic structure into a 35-Å EM map). On the other hand, sam-
pling is also needlessly wasteful when the sampling precision is
much higher than the representation precision (e.g., sampling the
position of a 100-Å bead with a precision of 0.1 Å).
The definition is illustrated using three alternate representations

for a yeast endocytic adaptor protein, Sla1, with hypothetical in-
teratomic distances as input information (Fig. 1). The atomic repre-
sentation (Fig. 1A) facilitates the most precise formulation of spatial
restraints because individual atoms are represented; it is also the most
informative representation for the region of interest. However, it also
requires the most expensive sampling, due to the large number of
degrees of freedom. While the low-resolution coarse-grained repre-
sentation (Fig. 1B) is most efficient for sampling, it is neither precise
for translating atomic distance data into restraints (several restraints
are mapped inside a single bead) nor informative for the region of
interest (only 1.25 beads represent the area of interest).
In contrast to these two representations, an optimal represen-

tation (Fig. 1C) is the most detailed representation that can be
sampled exhaustively. It has a variable resolution based on the
availability of experimental data for different parts of the structure.
As a result, it facilitates more precise translation of data into spatial
restraints (higher-resolution beads in data-rich regions), as well as
a more detailed analysis in the region of interest (approximately

13 beads), compared with the low-resolution representation. The
models in the optimal representation can be exhaustively sampled
in much less time than those in the atomic representation.

Setup for Binary Complexes. Next, using sample complexes, we show
that optimal coarse-grained representations compare favorably to
other representations and can be efficiently computed and used for
sampling. To study the optimal representation, we rely on three
illustrative cases of binary complexes in which one protein of un-
known structure (“ligand”) is flexibly docked to a rigidly fixed pro-
tein of known structure (“receptor”). The first case is a complex
between the e-subunit (ligand) and a homolog of the θ-subunit
(receptor) of DNA polymerase III (Fig. 2). The second is a com-
plex between the DNase domain of a bacterial toxin colicin E7 (li-
gand) and its inhibitor protein Im7 (receptor) (SI Appendix, Fig. S3),
and the third is a complex between soybean trypsin inhibitor (ligand)
and porcine pancreatic trypsin (receptor) (SI Appendix, Fig. S4). In
each case, the input information consists of simulated intermolecular
cross-links, excluded volume, and sequence connectivity (SI Appendix,
Table S1), providing examples of simple integrative modeling appli-
cations. The good-scoring models were sampled by the Gibbs sam-
pling replica-exchangeMonte Carlo method (34). Four representations
were considered: uniformly coarse-grained representations using 1, 20,
and 50 residues per bead and the optimal variable resolution coarse-
grained representation, r*. Here r* is found by starting with a high-
resolution representation, followed by an iterative process consisting of
sampling and merging consecutive beads into larger beads based on
their sampling precision and the definition of the optimal representa-
tion (Methods and SI Appendix, Fig. S1). It has beads containing 1–30
residues.

How Does the Optimal Representation Compare with Other
Representations? We compare the four representations in terms of
their sampling efficiency (i.e., total CPU time used), fit to data of the
resulting models (i.e., average cross-linked distance across good-
scoring models), and representation resolution (i.e., number of res-
idues per bead). We find that r* compares favorably to all tested
uniform-resolution representations (Fig. 2 and SI Appendix, Figs. S2–
S4). The sampling efficiency of r* is comparable to that of the most
coarse-grained representations (20- and 50-residue representations),
while being 12–21 times faster than the sampling with highest-
resolution representation (Fig. 2A and SI Appendix, Figs. S3A and
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Fig. 2. Comparison of representations for a flexi-
bly docked ligand (e-subunit) of a binary complex
involving the e-subunit and a homolog of the
θ-subunit of DNA polymerase III (PDB ID code
2IDO) (38). The performance of an optimal repre-
sentation (r*) and an approximately optimal, more
efficiently computed representation (r′) is com-
pared with other uniform-resolution representa-
tions of 1 residue (r1), 20 residues (r20), and 50
residues (r50) per bead. (A) Total CPU time in sec-
onds for model sampling using a representation
(black bars, left y-axis) as well as time to compute
an optimal representation (white bars, left y-axis
for r* and r′), using a six-core dual Intel Xeon
E5-2620 v3 processor. The fit to data as measured
by the average distance between beads restrained
by cross-links, across good-scoring models of a
representation (gray bars, right y-axis). Error bars
represent SE (too small to observe). (B) The pro-
gression of the incremental coarse-graining ap-
proach for obtaining r* is shown via heat maps for
each iteration, showing the sampling precision per
bead along the sequence of the ligand, with con-
secutive beads separated by dashed lines. Highly
precise regions are in black/red, and imprecise re-
gions are in yellow/white, as depicted in the color
bar. The first row shows the residues with cross-links (XL), and each consecutive row represents an iteration where imprecise beads are coarse-grained
to 1, 5, 10, 20, and 30 residues, respectively. SI Appendix, Fig. S2 shows a similar heat map for r′.
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S4A). r* fits the data as well as the one-residue representation (Fig.
2A and SI Appendix, Figs. S3A and S4A). Other representations have
comparable, if slightly worse, fits to the data. r* has a higher reso-
lution in data-rich segments compared with other regions (Fig. 2B
and SI Appendix, Figs. S3B and S4B), with an average resolution of 1,
13.08, and 10.24 residues per bead for beads with cross-links, beads
without cross-links, and all beads, respectively, for the 2IDO complex
(Fig. 2B). Similar variability is observed for the other examples (SI
Appendix, Figs. S3B and S4B).
Examination of the search for an optimal representation shows

that the data-rich segments have the highest sampling precision
and thus are represented by the highest-resolution beads, while
other segments are incrementally coarse-grained to lower resolu-
tions (Fig. 2B and SI Appendix, Figs. S3B and S4B). Therefore, an
optimal variable resolution representation offers advantages over
both high-resolution and low-resolution uniformly coarse-grained
representations, being more efficient for sampling than the former
and more detailed than the latter.

Can an Optimal Representation Be Obtained Efficiently? We next
examine whether an optimal representation can be obtained effi-
ciently. Using the three examples, we compute an approximation, r′,
of an optimal representation using the same iterative coarse-graining
approach as above but with shorter sampling times, thereby reducing
the overall time for computing an optimal variable resolution rep-
resentation (SI Appendix, Table S1). In general, r′ is expected to be of
lower resolution than r*, because sampling precision increases with
sampling time. Nevertheless, r′ turns out to be comparable to r* (Fig.
2 and SI Appendix, Figs. S2–S4) in terms of sampling efficiency (Fig.
2A and SI Appendix, Figs. S3A and S4A), fit to data (Fig. 2A and SI
Appendix, Figs. S3A and S4A), and average resolution of the repre-
sentation (Fig. 2 and SI Appendix, Figs. S2, S3C, and S4C) while being
5- to 9-fold faster to compute. This speed-up is likely to be even
greater if, for example, larger coarse-grained bead sizes are allowed,
the number of coarse-graining iterations are fewer, and the modeled
structures are larger.
We also examined the effects of varying the amount of input

data on the resulting optimal representation for the three ex-
amples (SI Appendix, Text and Fig. S6).

Results on a 10-Protein Assembly. With the results for binary com-
plexes in hand, we next apply our approach to a large macromo-
lecular assembly of 10 proteins. We show that our approach
efficiently produces approximately optimal representations for large
macromolecular assemblies; these representations result in more
accurate structures and estimates of their uncertainty compared
with higher-resolution representations that cannot be sampled ex-
haustively in the available time. We optimize the representation of
the domains of unknown structure (composing ∼48% of the resi-
dues in 10 constituent proteins) in the human transcription and
DNA repair factor TFIIH. The input information included a pre-
viously published cryo-EM map, cross-links, excluded volume, and
sequence connectivity (SI Appendix, Table S1) (35). Good-scoring
models are sampled by a simulated annealing Monte Carlo method
(35). Four representations are considered: uniformly coarse-
grained representations using 5, 30, and 50 residues per bead and
an efficiently computed optimal variable resolution coarse-grained
representation (r′), with beads containing 10–50 residues.
We compare the representations in terms of their sampling ef-

ficiency, representation resolution, fit to data of the resulting
models, and the models themselves (Fig. 3). Obtaining r′ followed
by sampling the corresponding models is efficient and significantly
faster than sampling models using the five-residue representation,
which is the highest-resolution representation that can be sampled
in a reasonable time (Fig. 3, row t). The average resolution of r′ is
between those for the 30-residue and 50-residue representations,
suggesting that large protein assemblies with substantial regions of
unknown structure have too many degrees of freedom to enable
efficient sampling with high-resolution representations (Fig. 3,
row n). The resolution of r′ is higher than that of the 50-residue
representation at the C termini of RAD3 and TFB3 and at the N

terminus of SSL1. Compared with the 30-residue representation, r′
is of higher resolution in the data-rich regions of TFB3126–155 and
RAD3733–760 and of lower resolution in other regions, including
TFB3246–305, SSL21–60; 181–240; 669–782, TFB1409–528, and TFB21–394.
All representations fit the data equally well, with 5-, 30-, and 50-
residue representations and r′ satisfying 98.5%, 99.0%, 98.5%, and
99.0% of the cross-links, respectively. (A cross-link is satisfied if it is
within the cross-linking distance of 35 Å in any model of the major
cluster.) Similar models are obtained for the major cluster across
representations (Fig. 3). The model distribution using the 50-
residue representation is slightly different from those for other
representations, while retaining a similar arrangement of the 10
proteins. This observation is explained by the inability of only a few
large spherical beads to describe the protein shape. In summary, our
approach can efficiently produce approximately optimal variable
resolution representations for large assemblies.

Optimal Representations Are Better than ad hoc Representations.
Compared with the 50-residue representation, r′ is more detailed
and thus more informative for structure interpretation (Fig. 3, row
n). We next examined whether we get more accurate structures and
estimates of their uncertainty with an optimally coarse-grained
representation than with an ad hoc high-resolution representa-
tion, using TFIIH as an example. We sampled models in two high-
resolution representations, including uniformly coarse-grained
representations of one and five residues per bead, assuming that
our available sampling time is the time taken to obtain r′ and
sample the corresponding models (Fig. 3). Compared with r′, the
sampling time per Monte Carlo step is one order of magnitude
greater for the five-residue representation and three orders of
magnitude greater for the one-residue representation (Fig. 3, row
t). For both the one- and five-residue representations, we obtain
few good-scoring models (5 and 48, respectively), which are in-
sufficient for further analysis, including estimating uncertainty
(several thousands of models are needed) (34). The densities for
the five-residue representation indicate that the localizations are
incorrect for many proteins, including Tfb1, Tfb4, Ssl1, and Ssl2
(Fig. 3). In summary, the TFIIH example illustrates that sampling

r5 r30 r' r50

Ccl1
Kin28
Tfb3
Rad3
Ssl1
Ssl2
Tfb1
Tfb2
Tfb4
Tfb5

r5 [limited sampling]
Front Back

t
(x 104s)
n

(beads)

Fig. 3. Comparison of representations of a large assembly. Comparing the
performance of an approximately optimal representation (r′) with other
uniform-resolution representations of 5 (r5), 30 (r30), and 50 (r50) residues
per bead for the 10-protein transcription initiation and DNA repair factor
TFIIH. Also shown is the performance of a five-residue per bead represen-
tation with the sampling time equal to that used for computing r′ and
sampling the corresponding models (r5 [limited sampling]). Localization
probability density maps specifying the probability of any volume element
being occupied by a given bead in superposed good-scoring models (Top),
EM map (Bottom, gray mesh), and representative models (Bottom, beads
colored by protein) from the most populated cluster are shown for various
representations. The total CPU time in seconds (t) for sampling models in
various representations is shown as black bars (six-core dual Intel Xeon E5-
2620 v3 processor). The total number of beads (n) for regions of unknown
structure in each representation is shown in gray bars.
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an optimized representation instead of an ad hoc low-resolution
representation results in a more informative structure, and that
sampling an optimized representation instead of an ad hoc high-
resolution representation results in a more accurate structure and
estimate of its uncertainty. We rationalize the efficiency of our
approach in SI Appendix, Text and Fig. S7.

Discussion
Contrast with Previous Approaches. Here we have introduced the
idea of optimizing the representation of the modeled system to
explicitly maximize the feasibility of integrative structure modeling
and the utility of the resulting model. Several approaches have been
used to design coarse-grained representations for molecular dy-
namics simulations, including relative entropy minimization and
force-matching (Introduction). These approaches fix the mapping
(i.e., assignment of unique subsets of atoms to coarse-grained sites)
and optimize the parameters for the interaction scores between
coarse-grained sites (i.e., parameters of coarse-grained force fields).
In contrast, our approach optimizes the mapping itself by an iter-
ative process of coarse-graining and sampling (Figs. 1–3). Fur-
thermore, the optimality criteria in previous methods are based on,
for instance, matching interatomic forces and reproducing basic
structural, dynamic, and thermodynamic properties (force match-
ing) (15–17, 36) and reproducing the free-energy landscape of the
atomic ensemble (relative entropy minimization) (14). In contrast,
our optimality criterion depends on the sampling precision (34).
Importantly, the quality of input information, the scoring func-

tion, and the amount of sampling are all reflected in the sampling
precision. Therefore, the optimization of mapping as well as the use
of sampling precision in optimization distinguish our approach from
previous work. As a result, our approach has several advantages.

Advantages. First, in contrast to previous approaches, we do not
require a known structure, allowing us to apply our method for
integrative structure determination. Second, optimization of the
representation does not depend on the type of input information
nor the details of the scoring function, but instead relies on the
estimates of the sampling precision (34) as an indirect measure
of the data precision. Therefore, it is applicable to all kinds of
data, including those that can be mapped directly onto a protein
sequence (e.g., cross-links), as well as those that cannot (e.g., EM
density map). Moreover, this formulation may also be applicable
to other kinds of modeling problems, including modeling that
produces nonstructural models, as long as detailed degrees of
freedom can be combined into coarse-grained degrees of free-
dom and sampling precision can be estimated.
Third, our approach produces the most detailed representa-

tions that can be sampled exhaustively, thus facilitating trans-
lation of data into restraints and interpretation of the model,
while corresponding exhaustive sampling produces a more ac-
curate model and a more accurate estimate of its uncertainty.
Coarse-graining variably along the protein chain produces opti-
mal representations that are sampled more efficiently than the
highest-resolution representations while being more detailed
than lower-resolution representations (Fig. 2 and SI Appendix,
Figs. S3 and S4). In other words, ad hoc high-resolution repre-
sentations can result in inaccurate structures and estimates of
their uncertainty due to insufficient sampling (Figs. 1 and 3).
Likewise, ad hoc low-resolution representations can result in
imprecise formulation of restraints and uninformative models for
downstream interpretation (Figs. 1 and 3). By producing maxi-
mally detailed representations that still facilitate efficient sam-
pling, our approach overcomes these problems. The computing
time saved from sampling with an optimized representation in-
stead of a higher-resolution representation can be reinvested to
increase the size of the structure, to get a more accurate struc-
ture, and/or to get a more accurate measure of its uncertainty.
Fourth, the user can control the computing time of the method

by specifying the number of coarse-graining iterations, bead sizes
in each iteration, and amount of sampling per iteration. Fifth,
the resulting variable resolution representations can indicate

what regions of the structure have sparse and/or conflicting data,
thereby guiding future experiments.
Sixth, the method for finding an optimal coarse-grained rep-

resentation might also facilitate the identification of a good
multiscale representation. For example, the method could be
applied to each type of data individually, with the resulting dif-
ferent optimal coarse-grained representations composing the
multiscale representation.
Finally, even though our optimality criterion does not explic-

itly include the model fit to data, we demonstrate that the op-
timal representations from our method do fit the data well (Figs.
1–3). This outcome is expected because our approach maximizes
the representation resolution while requiring exhaustive sam-
pling of models.

Disadvantages.We note two disadvantages of our approach. First,
while our method may often save the overall computing time for
modeling, it may still be too slow for large structures. Second, the
use of the method is restricted to scoring functions applicable on
multiple scales (i.e., applicable to beads of multiple sizes), as is
generally the case for scoring functions in IMP (1).

Alternate Definition of Optimal Representation. Although we have
studied only a single representation optimality criterion in detail,
many other optimality criteria can be devised. Different criteria
may result in different optimal representations, and it might not
be possible to find a single representation that satisfies multiple
criteria. For example, given a large dataset of distances between
atoms of an entire cell, no representation, other than atomic,
could fit the data well; however, such a representation cannot be
efficiently and exhaustively sampled with the current computers.
We present alternative definitions of optimal representation in
SI Appendix, Text and Fig. S8.
As an aside, we note that we did not search for all nearly optimal

representations, because any nearly optimal representation is equally
useful and only one is needed. In other words, overfitting a repre-
sentation to the representation optimality criterion is not a problem,
unlike overfitting a structure model to the data.

Future Work.While we have focused on optimizing coarse-graining,
other aspects of model representation might be optimized using
similar approaches. These aspects include the number of rigid
bodies, number of states, protein stoichiometry, geometrical
primitives representing model components, and multiscaling. As
in the present work, the search for an optimal representation will
be guided by a representation optimality criterion. Given the
continually increasing computing power, it is conceivable that
representations and models will be sampled simultaneously.
These improvements will contribute to the applicability, accu-
racy, precision, completeness, and efficiency of integrative
structure determination, resulting in structures of larger sys-
tems and faster growth of the nascent Worldwide Protein Data
Bank (wwPDB) archive of integrative structures and associated
data (2, 7).

Materials and Methods
Summary of the Method. See the definitions at the beginning of Results. To
find an optimal representation for a given structure and input information
(Results), we used an incremental coarse-graining method (SI Appendix, Fig.
S1A), described here with an example (SI Appendix, Fig. S1B). Given input
information on a structure to be modeled, the scoring function, the sam-
pling scheme, and a few method parameter values (see below), the method
produces an optimal representation. We start with the highest-resolution
representation and sample the models corresponding to this representation,
with each model corresponding to a set of spatial coordinates of the beads
defined in this representation. The ensemble of good-scoring sampled
models is then analyzed to identify beads with sampling precision not
commensurate with their representation precision (termed “imprecise
beads”). The sampling and representation precisions are commensurate if
sp ≤ rp + c, where sp and rp are sampling and representation precisions, re-
spectively, and c is a tolerance parameter. Imprecise beads are then com-
bined with neighboring imprecise beads along the protein backbone to
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form larger beads consisting of consecutive smaller beads, the size of which
is limited by the resolution defined in the next iteration, thus defining the
modified coarse-grained representation for the next iteration. At this point,
we do not combine beads representing discontiguous regions of the struc-
ture (e.g., β-sheets with long intervening loops). Sampling of models, anal-
ysis of sampling precision, and coarse-graining are performed for the
maximum number of iterations or until no imprecise beads remain to be
coarse-grained in the current iteration.

Considerations for Parameters. Parameters of the method include those for
estimating the sampling precision (34) (grid size and criteria for selecting
good-scoring models); the set of bead sizes for incremental coarse-graining;
the tolerance, c, for defining the relationship between representation and
sampling precisions; and the time for sampling models of intermediate
representations. The grid size for estimating beadwise sampling precision is
2–3 Å, the radius of a single residue-level bead. The criteria for choosing
good-scoring models should result in a sufficient number of good-scoring
models to estimate the sampling precision. If a sufficient number of good-
scoring models is not obtained, then either more sampling is needed or the
criteria for good-scoring models need to be relaxed. The number of coarse-
graining iterations is based on the desired speed of convergence. The bead
sizes in consecutive iterations can be tens of residues apart, because the
bead size increases sublinearly with the number of residues. Furthermore,
the maximum bead size depends on the predicted protein shape (e.g., ex-
tended helices cannot be represented accurately by large spherical beads)
and the scoring functions used (not all scoring functions are compatible with
coarse-grained primitives). Ideally, the representation and sampling preci-
sions should be equal. We use the tolerance parameter c (usually 15 Å) to
allow for uncertainty in the estimate of the sampling precision arising from

the grid size and stochastic sampling. Finally, the time taken for sampling
models of intermediate representations is based on whether a sufficient number
of good-scoring models can be obtained at intermediate representations.

Illustrations and Their Parameters. Integrative modeling of the three binary
complexes relied on X-ray structures of the constituent proteins and simu-
lated intermolecular cross-links. One protein was kept fixed, and the re-
presentation of the second protein was optimized assuming that its structure
was either unknown (Figs. 2 and 3 and SI Appendix, Figs. S2–S5) or known (SI
Appendix, Fig. S6), in separate trials. The protocol for integrative modeling
of these complexes has been described previously (34). The parameters used
here are provided in SI Appendix, Table S1A. Integrative modeling of the
transcription/DNA repair factor TFIIH relied on a cryo-EM map of the com-
plex, cross-links, X-ray structures, and comparative models of the constituent
proteins (35). The protocol for integrative modeling has been described
previously (35), with parameters provided in SI Appendix, Table S1B.

Availability. The benchmark data and code used are available at https://github.
com/salilab/optimal_representation (39). The code relies on our open-source
Integrative Modeling Platform (IMP) package (integrativemodeling.org).
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