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Abstract

Integrative structure modeling provides 3D models of macromolecular systems that are based on informa-
tion from multiple types of experiments, physical principles, statistical inferences, and prior structural
models. Here, we provide a hands-on realistic example of integrative structure modeling of the quaternary
structure of the actin, tropomyosin, and gelsolin protein assembly based on electron microscopy, solution
X-ray scattering, and chemical crosslinking data for the complex as well as excluded volume, sequence
connectivity, and rigid atomic X-ray structures of the individual subunits. We follow the general four-stage
process for integrative modeling, including gathering the input information, converting the input informa-
tion into a representation of the system and a scoring function, sampling alternative model configurations
guided by the scoring function, and analyzing the results. The computational aspects of this approach are
implemented in our open-source Integrative Modeling Platform (IMP), a comprehensive and extensible
software package for integrative modeling (https://integrativemodeling.org). In particular, we rely on the
Python Modeling Interface (PMI) module of IMP that provides facile mixing and matching of macromolec-
ular representations, restraints based on different types of information, sampling algorithms, and analysis
including validations of the input data and output models. Finally, we also outline how to deposit an
integrative structure and corresponding experimental data into PDB-Dev, the nascent worldwide Protein
Data Bank (wwPDB) resource for archiving and disseminating integrative structures (https://pdb-dev.
wwpdb.org). The example application provides a starting point for a user interested in using IMP for
integrative modeling of other biomolecular systems.
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1 Introduction

To understand the function of a macromolecular assembly, we must
know the structure and dynamics of its components and the inter-
actions between them [1–4]. However, direct experimental deter-
mination of such a structure is generally rather difficult, as no
experimental method is universally applicable. For example, crystals
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suitable for X-ray crystallography cannot always be produced, espe-
cially for large assemblies of multiple components [5]. Cryo-
electron microscopy, on the other hand, can be used to study
large assemblies, but is often limited to worse than atomic resolu-
tion [6–8]. Finally, molecular biology, biochemistry, and proteo-
mics techniques, such as yeast two-hybrid [9], affinity purification
[10], and mass spectrometry [11], yield information about the
interactions between proteins but not the positions of these pro-
teins within the assembly or the structures of the proteins
themselves.

One approach to solve this problem is integrative modeling
[12], which is used to characterize the structures of single proteins
or their complexes by relying on multiple types of input informa-
tion, including varied experiments, physical theories, statistical
inferences, and prior structural models. By simultaneously consid-
ering all information, the method maximizes the accuracy, preci-
sion, completeness, and efficiency of structure determination.
Numerous structures have already been solved using this approach,
including the 26S ribosome [13], the bacterial type II pilus [14],
the structure of chromatin around the alpha-globin gene [15], the
molecular architecture of the yeast spindle pole body core [16], and
the architecture of the yeast nuclear pore complex [17]. The
method can also compute multistate models of conformationally
heterogeneous systems, as demonstrated by the two-state model of
the PhoQ sensor histidine kinase [18].

The Integrative Modeling Platform (IMP) is a comprehensive
and extensible software package for performing integrative model-
ing. The flexibility of core software allows for constructing custo-
mized representations of structure and data as well as sampling and
analysis protocols. The tools to complete the entire integrative
modeling workflow (Fig. 1) are contained within IMP. Herein,
we describe the Python Modeling Interface (PMI) to IMP that
significantly simplifies encoding the modeling process [19].

2 Methods

The goal of PMI is to allow structural biologists with limited
programming expertise to determine the structures of large protein
complexes. PMI is a top-down modeling system that relies on a
series of macros and classes to simplify encoding of the modeling
protocol, including designing the system representation, specifying
scoring function, sampling alternative structures, analyzing the
results, facilitating the creation of publication-ready figures, and
depositing into PDB-Dev (see below). PMI exchanges the high
flexibility of IMP for ease-of-use, all within one short Python script
(<100 lines). Despite its simplicity in creating standard modeling
workflows, PMI is powerful and extensible—it is built on IMP and
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creates native IMP objects, which means that the advanced user can
customize many aspects of the modeling protocol. Below, we out-
line each stage of the modeling process as performed in PMI
(Fig. 2).

2.1 Gathering

Information

Information about a system that we wish to model includes every-
thing that we directly observe, can infer through comparison to
other systems, and fundamental physical principles. Experimental
data that are commonly utilized in integrative modeling include
X-ray crystal structures, EM density maps, NMR data, chemical
crosslinks, yeast two-hybrid data, and Förster resonance energy

Fig. 1 The four stages of integrative modeling. This schematic describes the integrative structure modeling
procedures used in this tutorial. The first row details the information to be used in modeling. The background
color of each information source indicates where the information is applied in modeling, as detailed in the key
at the top. The second row describes how each information source is converted into spatial restraints. The
third row details the sampling protocol. The last row details the analysis and validation steps of the modeling.
The modifiable Adobe Illustrator file for this figure can be found in the tutorial repository: figures/Figure1/
actin_tutorial_4stage.ai
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transfer (FRET) measurements. Atomic resolution information
may be applied directly as structural restraints from atomic statisti-
cal potentials [20, 21] and molecular mechanics force fields
[22, 23] or derived from comparative modeling programs such as
MODELLER [24] and PHYRE2 [25].

Each piece of information can be utilized within the modeling
procedure in one or more of five distinct ways: defining model
representation, defining sampling space/degrees of freedom, scor-
ing models during sampling, filtering models post-sampling, and
validating completed models.

2.2 System and Data

Representation

The representation of the system defines the structural degrees of
freedom that will be sampled and is designed based on the infor-
mation at hand. We can utilize a multiscale representation, where
model components can be modeled at one or more different reso-
lutions commensurate with the information content at that site
(Fig. 3). For example, a domain described by a crystal structure
can be represented at atomic resolution and a disordered segment
can be represented as a string of spherical beads of ten residues
each. In addition, non-particle-based representations, such as
Gaussian mixture models (GMMs), can also be used, for example,

System

State 0 State 1 State 2

MolA.0 MolA.1 MolA.2 MolB.0 MolC.0

Res1 Res2 Res3 Res4 ResN

Fragment 1-10 Fragment 11-20 Fragment M

N C CA H

Gaussian 1 Gaussian 2 Gaussian K

Resolution 0

Resolution 1

Resolution 10

Densities

Fig. 2 PMI hierarchy. PMI is constructed as a top-down hierarchy beginning with a system. A system can
contain one or more states with each state being a different conformation, composition, or time-ordered step
in the system. Each state comprises one or more molecules that may have one or more copies per molecule.
At the final level, each molecule is represented at one or more resolutions
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in EM density fitting [26, 27]. Choosing a representation reflects a
compromise between the need for details required by the biological
application of the model and the need for coarseness required by
limited computing power.

Some of the input information is translated into restraints on
the structure of the model. These spatial restraints are combined
into a single scoring function that ranks alternative model config-
urations (models) based on their agreement with the information.
The scoring function defines a multi-dimensional landscape
spanned by the model degrees of freedom; the good-scoring mod-
els on this landscape satisfy the input restraints.

2.3 Sampling In most cases, all possible models cannot be generated. Thus, we
utilize sampling methods to search for models that agree with the
input data according to the scoring function defined above (good-
scoring models). One approach for sampling models in IMP is a
Monte Carlo algorithm [28], guided by our scoring function and
accelerated by replica exchange [29]. Other sampling methods can
be utilized for specific cases (see Note 1).

2.4 Analysis The results of stochastic sampling (i.e., an ensemble of output
structures and their respective scores) must be analyzed to estimate
the sampling precision and accuracy, detect inconsistencies with
respect to the input information, and suggest future experiments
(Fig. 4).

We wish to analyze only models that are sufficiently consistent
with the input information (good-scoring models). A good-scoring
model must sufficiently satisfy every single piece of information
used to compute it; therefore, one needs a threshold for every
data point or set of data. Sampling may produce zero such models,
which can result from inconsistent data or an unconsidered multi-
plicity of conformational states (see Note 2).

Given a set of good-scoring models, we must first estimate the
precision at which sampling found these most good-scoring solu-
tions (sampling precision) (Fig. 4, step 1) [16, 17, 30]. This esti-
mate relies on splitting the set of good-scoring models into two
independent samples, followed by comparing them to each other
using four independent tests: (1) convergence of the model score,
(2) whether model scores for the two samples were drawn from the
same parent distribution, (3) whether each structural cluster
includes models from each sample proportionally to its size, and
(4) sufficient similarity between the localization densities (see Note
3) for the entire system, from each sample. After threshold cluster-
ing of models, the sampling precision is defined as the largest
RMSD value between a pair of structures within any cluster, in
the finest clustering for which the structures from the two indepen-
dent runs contribute proportionally to their size (Fig. 6d). In other
words, the sampling precision is defined as the precision at which
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Fig. 3 Ways of representing a single biomolecule. (a) The complexity of a molecular system can be
represented in four ways. An ensemble of states describes the structural heterogeneity around a single
solution. Multiple states are used to describe systems that exist in multiple thermodynamic wells. The system
can be modeled at a multitude of scales commensurate with the different types of information known about
it. Finally, individual states can be time-ordered, allowing for the modeling of the transition rates between
them. (b) Multiple representations can be simultaneously applied to the same biomolecule so that information
of various types can be applied at the proper scale and form. The molecule is first defined by its sequence
connectivity. Flexible beads comprising one or more residues are commonly applied to loops where no high-
resolution structure is available. Areas that have high-resolution structure can be modeled by spherical beads
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the two independent samples are statistically indistinguishable. The
individual clusters for each sample are also compared visually (Sub-
heading 4.5.3) to confirm similarity.

At this step, the model precision (uncertainty), which is repre-
sented by the variability among the good-scoring models, is also
reported. This uncertainty can be quantified by measures such as
root-mean-square deviation (RMSD) of model components for
models within each cluster or between clusters determined above.
The lower bound on model precision is provided by the sampling
precision; the model precision cannot be higher than the sampling
precision.

An accurate model must satisfy all information about the sys-
tem, and this is evaluated in a number of steps. First, the consis-
tency of the model with input information is assessed by
independently assessing the clusters determined above against the

�

Fig. 3 (continued) of one residue for the evaluation of residue-specific information such as chemical cross-
links or NMR distance restraints. Ten-residue beads are generally used to model lower resolution information
such as SAXS data and the excluded volume restraint. The molecule can be represented as a Gaussian mixture
model for comparisons to EM densities. IMP and PMI can utilize all of these representations simultaneously in
a multi-scale model. Panel a adapted from [34]

Low 
variance 

Good scoring 
models from all 
sampling runs

4. Fit to data not 
used in modeling

3. Resampling 
   jackknifing 
   bootstrapping 
   cross-validation 

Split into two 
independent 
samples 

5. Biological sense 

1. Sampling Convergence

Pass

2. Analyze fit to 
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Fig. 4 Analysis pipeline. Analysis of sampling runs begins by filtering models that satisfy all input information.
In step one, this set is split into two independent samples to assess the precision at which sampling is
converged. If sampling has converged at a high enough precision, the resulting models can be assessed
against the input information to identify potential multiple states. Resampling can be performed by either
systematically or randomly excluding data sets and rerunning the simulation and sampling convergence
algorithms. The models can then be assessed against data that were not used in modeling. Finally, the models
are assessed for logical sense in answering the original biological question
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input data (Fig. 4, step 2). In the next step, the models are assessed
by random or systematic cross-validation (Fig. 4, step 3). The next
and most robust validation is the consistency of the model with data
not used to compute it (Fig. 4, step 4), similar to a crystallographic
Rfree.

A final validation is the presence of features in the model that
are unlikely to occur by chance and/or are consistent with the
biological context of the system (Fig. 4, step 5). For example, a
16-fold symmetry was found in the model of the Nuclear Pore
Complex, when only eightfold symmetry had been enforced [31]
and the displacement of the aspartate sensor domain in a two state
model of the histidine kinase PhoQ transmembrane signaling
agreed with previous analysis [18].

A key feature of the four-step procedure for integrative model-
ing (Fig. 1) is that it is iterative. Assessment may reveal a need to
collect more input data or suggest future experiments, both by the
researchers who constructed the initial model and by others.

2.5 Deposition For the models, data, and modeling protocols to be generally
useful, they must be reproducible and available to everyone in a
publicly accessible database. This availability allows any scientist to
use a deposited model to plan experiments by simulating potential
benefits gained from new data. Computational groups can more
easily experiment with new scoring, sampling, and analysis meth-
ods, without having to reimplement the existing methods from
scratch. Finally, the authors themselves will maximize the impact
of their work, increasing the odds that their results are incorporated
into future modeling. Following the recommendations of the
wwPDB Hybrid/Integrative Methods Task Force in 2015 [32], a
prototype archive, PDB-Development (PDB-Dev, https://pdb-
dev.wwpdb.org/) [33, 34] has been recently established to store
integrative models and corresponding data. The mmCIF file format
used to archive regular atomic PDB structures was extended to
support the description of integrative models, including informa-
tion on the input data used, the modeling protocol, and the final
output models. As of July 2018, PDB-Dev contains 14 depositions,
including nine generated by IMP.

3 Materials

3.1 IMP IMP binaries for most platforms can be downloaded and installed
from:

https://integrativemodeling.org/download.html.
The tutorial has been built to work with the latest stable release

of IMP at the time of writing, 2.9.0.
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3.2 Chimera Modeling results can be visualized using Chimera version 1.13 or
later, which can be downloaded from https://www.cgl.ucsf.edu/
chimera/download.

3.3 Actin Tutorial

Code and Data

The data and code used in the tutorial below can be downloaded
from https://github.com/salilab/actin_tutorial. The home direc-
tory of the repository, actin_tutorial, will be used to reference
all other paths in the tutorial below.

Analysis scripts are located in ./analysis/scripts. These
are slightly modified from the stand-alone script library for
performing sampling exhaustiveness found at https://github.
com/salilab/IMP-sampcon. These analyses rely on pyRMSD [35].

3.4 Computer Skills

Requirements

PMI stands for Python Modeling Interface. Interaction with PMI
requires Python scripts. The tutorial scripts for PMI are written to
be interpretable by even those with minimal or no Python experi-
ence. However, performing advanced tasks and/or designing novel
workflows benefits from a working knowledge of Python.

3.5 Computational

Resources and Time

The full tutorial simulation can be run in a few hours on a modern
desktop computer or a laptop. A multicore system is preferred to
utilize replica exchange.

4 Integrative Modeling of ADP-Actin, Gelsolin, and C-Terminal Actin-Binding
Domain of Tropomodulin

Herein, we demonstrate integrative modeling using the PMI inter-
face by modeling the complex of actin and tropomodulin–gelsolin
chimera using SAXS, EM, crosslinking, crystal structures of the
individual domains, and physical principles. This complex was
solved by X-ray crystallography at 2.3 Å resolution (PDB: 4PKI)
[36]. We use this structure to simulate biophysical data and assess
the accuracy of the modeled complexes. In this simple exercise, we
assume that we have a crystal structure of only the actin–gelsolin
interface and would like to find the tropomyosin–actin binding
interface. The entire modeling protocol is summarized in the
four-stage diagram (Fig. 1).

4.1 Gathering and

Preparing Information

All data are contained in subfolders of the ./data directory of the
tutorial.

4.1.1 Structural Data

from the PDB

The crystal structure 4PKI is used to set the atomic coordinates for
each of the domains in the FASTA sequence that determines the
composition of each biomolecule, as well as the coordinates for
tropomyosin and the actin–gelsolin complex (Fig. 5).
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4.1.2 Chemical

Crosslinks

Thirty-three simulated crosslinks were generated from a random
subset of lysine residue pairs whose CA-CA distances are under
25 Å.

4.1.3 Electron

Microscopy

A simulated EM density of the entire complex was created at 20 Å
resolution using IMP (see Note 4). The simulated map is approxi-
mated as a Gaussian Mixture Model (GMM) [27].

4.1.4 SAXS A simulated SAXS profile of the entire 4pki.pdb complex was
created using FoXS [37].

4.1.5 Other Information We also define restraints such as excluded volume and sequence
connectivity to add chemical and physical knowledge to the mod-
eling protocol.

4.2 Defining System

Representation and

Degrees of Freedom

in the Topology File

The model representation (e.g., bead size and rigid bodies) can be
set within the topology file. The topology file is a pipe-delimited
format with each line specifying a separate domain and keyword
values determining how the domain is represented. A definition of
each keyword is given in Table 1.

Fig. 5 Actin–gelsolin–tropomyosin complex. Top: Reference crystal structure
4PKI showing actin in green, gelsolin in red, and tropomyosin in blue. Bottom:
Multiscale representation and position of the system after domain shuffling and
bead relaxation. Structured domains are represented by spherical beads of one
and ten residues. Unstructured residues from the linker between the gelsolin and
tropomyosin domains are represented as gray beads
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The topology file for this tutorial, shown below, is found at
./modeling/topology.txt. Here, the system is subdivided into
four distinct domains: one each for the three structured domains
(actin, gelsolin, and tropomyosin) and one consisting of the
18-residue engineered linker between gelsolin and tropomyosin.
The first domain, the entire actin molecule, is colored green and
contains the entirety of chain A from 4pki.pdb. A bead_size of
1 residue per bead is assigned to any unmodeled section (i.e., not
present in the PDB file) (see Note 5). A GMM is approximated
using ten residues per Gaussian. This domain is assigned to
rigid_body 1. The second domain, the gelsolin portion of the
chimera, is constructed by selecting the residue_range 52–177
of chain G. These residues, however, are numbered 1–126 in the
FASTA file; therefore, a pdb_offset of �51 must be added. This
domain is also assigned to rigid_body 1 to preserve the actin/
gelsolin interface. The third domain is the linker, whose residues
have no structure associated with them; thus, they are given a
pdb_fn of BEADS with a bead_size of 1 (see Note 6). The
final domain, tropomyosin, is built similarly to gelsolin and

Table 1
Topology file keywords and descriptions

molecule_name Name of the molecule that this domain is a part of

color The color used in the output RMF file for this component. Uses Chimera
defined names (see Note 23) or RGB values (e.g., 155,35,0)

fasta_fn Name of FASTA file containing this component

fasta_id String found in FASTA sequence header line

pdb_fn Name of PDB file with coordinates (if available). If left empty, will set up as
BEADS. Using IDEAL_HELIX will build a helix (see Note 24)

chain Chain ID of this domain in the PDB file

residue_range Comma delimited pair defining range of residues. Can leave empty or put
all to use entire sequence from FASTA file

pdb_offset Offset to sync PDB residue numbering with FASTA numbering

bead_size The size (in residues) of beads used to model areas not covered by PDB
coordinates

em_residues_
per_gaussian

The number of residues per Gaussian used to model the electron density of
this domain. Set this to zero if no EM fitting will be done

rigid_body The ID number of the rigid body that contains this component

super_rigid_body The ID number(s) of the super rigid body(ies) containing this component

chain_of_super_
rigid_bodies

Automatically group overlapping segments of beads into super rigid bodies.
The number here, as for rigid_body, specifies the member of the chain
to which this domain belongs
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assigned to rigid_body 2, since we would like to sample its
position separate of the rest of the complex.

|molecule_name | color | fasta_fn | fasta_id | pdb_fn | chain | residue_range |

pdb_offset | bead_size | em_residues_per_gaussian | rigid_body | super_rigid_body |

chain_of_super_rigid_bodies |

|actin |green|4pki.fasta.txt|actin |4pki.pdb|A|1,END |0 |1|10|1|1||

|geltrop|red |4pki.fasta.txt |gelsolin-tropomyosin|4pki.pdb|G |52,177|-51 |1|10|1|1||

|geltrop|gray|4pki.fasta.txt|gelsolin-tropomyosin|BEADS|G|178,195 |-51 |1|10|1|1||

|geltrop|blue|4pki.fasta.txt|gelsolin-tropomyosin|4pki.pdb|G|1170,1349|-1025|1|10|2|

1||

This topology file also places all domains in a single super_-
rigid_body. This definition allows the entire complex to move as
a single unit, which is useful for fitting to the EM map.

4.3 Constructing the

Modeling Script

The modeling script contains the entire workflow from defining the
system representation through execution of sampling. The system
representation and sampling degrees of freedom can be built man-
ually (see Note 7) or, as here, read from a topology file. Restraints
are added and the sampling protocol defined and executed.

4.3.1 Importing and

Building System

Representation

First, we create an IMP Model object, which stores all components
of the model. Second, we create a BuildSystem object and define
the resolutions at which residues in the structured sections will
be modeled. Here, we set resolutions of 1 and 10 residues per bead
so that crosslinking restraints can be evaluated at residue resolution
and the expensive excluded volume restraint (below) can be eval-
uated at the lower resolution. Third, the topology file is read using
a TopologyReader object, followed by generating a useful list of
component molecules. To this BuildSystem object, we add a
state corresponding to the representation defined in the topology
file using bs.add_state() (see Note 8).

mdl = IMP.Model()

bs = IMP.pmi.macros.BuildSystem(mdl, resolutions=[1,10])

t = IMP.pmi.topology.TopologyReader(topology.txt)

molecules = t.get_components()

bs.add_state(t)

We then execute the macro, which returns the root_hier root
hierarchy and dof degrees of freedom objects, which will be used
later. Within the macro, we set the movement parameters of indi-
vidual beads and rigid bodies. Translations (trans) are defined in
angstroms and rotations (rot) in radians.
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root_hier, dof = bs.execute_macro(max_rb_trans=1.0,

max_rb_rot=0.5,

max_bead_trans=2.0,

max_srb_trans=1.0,

max_srb_rot=0.5)

4.3.2 Adding Restraints

to the Model

PMI contains simple interfaces for a number of IMP restraints that
model various types of chemical and physical data and knowledge.
All of these restraints produce output, which we will collect in an
output_objects list. Each restraint also needs to be explicitly
added to the scoring function for sampling, using the add_to_-
model() command. We will add the restraints to the scoring
function in a specific order, discussed below.

First, we define the restraints that enforce physical and chemical
principles (see Note 9). The ConnectivityRestraint adds a
bond between each pair of consecutive residues in each molecule.
The ExcludedVolumeSphere restraint is applied to the entire
system and enforced at the lowest resolution possible (indicated
by resolution ¼ 1000), because this restraint is costly to evaluate.

output_objects=[]

for m in molecules:

cr = IMP.pmi.restraints.stereochemistry.ConnectivityRes-

traint(m)

cr.add_to_model()

output_objects.append(cr)

evr = IMP.pmi.restraints.stereochemistry.ExcludedVolumeSphere(

included_objects=[root_hier],

resolution=1000)

output_objects.append(evr)

Second, we build a SAXSRestraint based on the comparison
of SAXS data to the model. Since our model is calculated at residue
resolution, we calculate the SAXS profile using residue form factors.
For residue-based calculations, we compare curves out to a q of
0.15 (see Note 10).

sr = IMP.pmi.restraints.saxs.SAXSRestraint(input_objects=[root_hier],

saxs_datafile=saxs_data,

weight=0.01,

ff_type=IMP.saxs.RESIDUES,

maxq=0.15)

To set up a crosslinking restraint, we first build a PMI Cross-
LinkDataBase that uses a CrossLinkDataBaseKeywordsCon-
verter to interpret a crosslink data file. At a minimum, the
crosslink data file needs four columns labeled with a key: one for
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each protein name and one for each residue number of the cross-
link. The standard keys are Protein1, Residue1, Protein2, and
Residue2 (see Note 11).

xl_data = "./derived_data/xl/derived_xls.dat

xldbkc = IMP.pmi.io.crosslink.CrossLinkDataBaseKeywordsConverter()

xldbkc.set_standard_keys()

xldb = IMP.pmi.io.crosslink.CrossLinkDataBase()

xldb.create_set_from_file(file_name=xl_data,

converter=xldbkc)

Using this database, we can construct the crosslinking restraint.
We input the root hierarchy of the system and the database, and
specify the length of the crosslinker. The restraint can be evaluated
at any resolution, though it is generally most informative at resolu-
tion ¼ 1. The length determines the inflection point of the scoring
function sigmoid [18] and is generally set to 10 Å + the crosslinker
length for Lys-Lys crosslinkers.

xlr = IMP.pmi.restraints.crosslinking.CrossLinkingMassSpectrometryRestraint(

root_hier=root_hier, # Must pass the system root hierarchy

CrossLinkDataBase=xldb, # The crosslink database.

length=25, # The crosslinker plus side chain length

resolution=1, # The resolution to evaluate the crosslink

slope=0.0001, # This adds a linear term to the score

# to bias crosslinks towards each other

weight=10) # Scaling factor for the restraint score.

output_objects.append(xlr)

The EM restraint is determined by calculating the overlap
(cross-correlation) between the system GMM density particles
and the map GMM particles. First, we must collect the density
particles using an IMP Selection. We then invoke the restraint
using these particles and the gmm file generated from the EMmap.

densities = IMP.atom.Selection(root_hier,

representation_type=IMP.atom.DENSITIES).get_selected_particles()

em_map = "./derived_data/em/4pki_20a_50.gmm"

emr = IMP.pmi.restraints.em.GaussianEMRestraint(

densities, # Evaluate the restraint using these model densities

target_fn=em_map, # The EM map approximated as a Gaussian mixture model (GMM)

slope=0.00000001, # a small force to pull objects towards the EM map

scale_target_to_mass=True, # Normalizes the mass of the model wrs: EM map

weight=100) # the scaling factor for the EM score

output_objects.append(emr)
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4.3.3 Defining the

Sampling Protocol

Sampling begins by randomizing the coordinates of the starting
particles using shuffle_configuration (see Note 13). Because
this randomization generally places beads of neighboring residues
far apart, we first optimize the positions of these flexible beads
using steepest descent minimization for 500 steps based on only
the connectivity restraint. We then add the balance of the scoring
function terms to the model prior to the main sampling step.

IMP.pmi.tools.shuffle_configuration(root_hier,

max_translation=50)

dof.optimize_flexible_beads(500)

evr.add_to_model()

emr.add_to_model()

xlr.add_to_model()

sr.add_to_model()

We implement a Monte Carlo sampling scheme with replica
exchange using the PMI ReplicaExchange0 macro. Within this
macro, we set the directory where all output files will be placed,
global_output_directory, and the number_of_frames to
generate. The final line of the script executes the sampling macro.

rex=IMP.pmi.macros.ReplicaExchange0(mdl,

root_hier=root_hier, # the system root hierarchy

crosslink_restraints= [xlr], # This allows viewing of crosslinks in Chimera

monte_carlo_sample_objects=dof.get_movers(), # all objects to be moved

global_output_directory=’run1/’ # Set the output directory for this run.

output_objects=output_objects, # Write these items to the stat file

monte_carlo_steps=10, # Number of MC steps between writing frames

number_of_best_scoring_models=0, # set >0 to store best scoring PDB files

number_of_frames=10000) # Total number of frames to generate

rex.execute_macro()

4.4 Running the

Modeling Script

Modeling analysis requires at least two independent sampling runs
be performed. For each run, in modeling.py, the global_out-
put_directory keyword can be set to run1, run2, . . ., runX.

The modeling script can be run on a single processor using the
following command:

python ../modeling.py

or in parallel using N processors using the command

mpirun -np N python ../modeling.py
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A parallel invocation of IMP will run replica exchange with N
replicas. A serial run will run a basic Monte Carlo protocol with one
replica.

Raw output will be written to the ./runX/output folder, as
specified in the replica exchange macro. Within this folder, stat files
contain tabulated statistics for each frame. In the rmf directory,
model coordinates for the lowest temperature replica are stored.
These can be opened directly in Chimera and the “trajectories”
observed.

4.5 Analysis Analysis is performed using scripts located in./analysis/
scripts/. The already-generated sampling output will be ana-
lyzed here; it is contained in the folders ./modeling/run1 and
./modeling/run2.

Analysis is performed in a new directory: ./analysis/
tutorial_analysis/.

4.5.1 Filtering Good

Scoring Models

The select_good_scoring_models.py script filter models
based on score and parameter thresholds. In this script, required
flags are �rd, which specifies the directory containing sampling
output folders; �rp, which defines the prefix for the sampling
output folders; �sl, which defines the stat file keywords (see
Note 13) that we wish to filter on; �pl, which specifies the key-
words that will be written to the output file; �alt and �aut, which
specify, respectively, the lower and upper threshold for each key-
word in �sl that define acceptance. The �mlt and �mut keywords,
which are optional, define thresholds for restraints made of multiple
components (such as crosslinks).

Here, we first use crosslink satisfaction as an initial filtering
criterion because we usually have an a priori estimate of the false
positive rate and/or cutoff distance (see Note 14). For this
simulated system, we only accept models with 100% satisfaction of
crosslinks by setting both �alt and �aut to 1.0. A crosslink is
satisfied if the distance is between 0.0 and 30.0 Å, as delineated by
the �mlt and �mut keywords, respectively. We specify that connec-
tivity, crosslink data score, excluded volume, EM, SAXS, and total
scores be printed as well.

python ../scripts/select_good_scoring_models.py -rd ../../modeling -rp run -sl

"CrossLinkingMassSpectrometryRestraint_Distance_" -pl

ConnectivityRestraint_None CrossLinkingMassSpectrometryRestraint_Data_Score

ExcludedVolumeSphere_None GaussianEMRestraint_None SAXSRestraint_Score

Total_Score -alt 1.0 -aut 1.0 -mlt 0.0 -mut 30.0

This script creates a directory ./filter/ and a file, ./filter/
models_scores_ids.txt, that contains the model index, its
run, replica ID, frame ID, scores, and sample ID for each model.
We can now use the script plot_score.py to plot the distribution
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of SAXS, EM, connectivity, and excluded volume scores from this
first set of filtered models to determine a reasonable threshold for
accepting or rejecting a model.

python ../scripts/plot_score.py ./filter/model_ids_scores.txt

SAXSRestraint_Score

python ../scripts/plot_score.py ./filter/model_ids_scores.txt

GaussianEMRestraint_None

The resulting histograms (SAXSRestraint_score.jpg and
GaussianEMRestraint_None.jpg) are roughly Gaussian.
Based on these distributions, we set our criteria for good scoring
models as those whose EM and SAXS scores are >1 standard
deviation below the mean, except for connectivity, which is well
satisfied in almost all models and EM, which has a large tail (see
Note 15). Our high score thresholds are 2.0 for EM, 4.554 for
SAXS, 1.0 for connectivity, and 4.916 for excluded volume.

We rerun select_good_scoring_models.py adding the
extra keywords and score thresholds. We add the extra flag, �e, to
extract Rich Molecular Format (RMF) files of all good scoring
models. These thresholds return 1618 good scoring models (see
Note 16).

python ../scripts/select_good_scoring_models.py -rd ../../modeling -rp run -sl

"CrossLinkingMassSpectrometryRestraint_Distance_" GaussianEMRestraint_None

SAXSRestraint_Score ConnectivityRestraint_None ExcludedVolumeSphere_None -pl

ConnectivityRestraint_None CrossLinkingMassSpectrometryRestraint_Data_Score

ExcludedVolumeSphere_None Total_Score -alt 1.0 -50 -50.0 0.0 0.0 -aut 1.0 2.0

4.554 1.0 4.916 -mlt 0.0 0.0 0.0 0.0 0.0 -mut 30.0 0.0 0.0 0.0 0.0 -e

The output directory, good_scoring_models, contains
folders sample_A and sample_B, which hold the RMF files of
the good scoring models for each independent run (or set of runs).
The file model_ids_scores.txt contains the model index, its
run, replica ID, frame ID, scores, and sample ID for each model.

4.5.2 Determining

Sampling Precision,

Clustering, and Computing

Localization Densities

The Master_Sampling_Exhaustiveness_Analysis.py
script is used to calculate the sampling precision of the modeling.
During this step, multiple tests for convergence are performed on
the two samples determined in Subheading 4.5.1, models are clus-
tered, and localization densities are computed.

First, we create a file, density_ranges.txt, in the tutor-
ial_analysis/ directory with a single line that defines compo-
nents using PMI selection tuples on which we calculate localization
densities (seeNote 17). Here, we create three localization densities,
one for the entire actin molecule and one each for the structured
residues of each of the other two molecules.
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density_custom_ranges={"Actin":[’A’],"Gelsolin":

[(1,126,’G’)],"Tropomysin":[(145,324,’G’)]}

We now run the script for testing sampling exhaustiveness.

python ../scripts/Master_Sampling_Exhaustiveness_Analysis.py

-n actin –p good_scoring_models/ -d density_ranges.txt -m

cpu_omp -c 8 -a -g 0.1

The system name, actin, defines the labels for the output files.
The �a flag aligns all models (see Note 18) and �g determines the
step size in Å for calculating sampling precision (seeNote 19). This
routine can be run in parallel using the �m cpu_omp flag (see Note
20) and �c N, where N is the number of processors. The �p flag
defines the path to the good scoring model directory.

The results of the convergence tests are summarized in the
output figure (Fig. 6) actin_convergence.png, which identifies
our sampling precision of 3.5 Å, with one dominant cluster, one
minor cluster, and one cluster of insignificant size. Text files con-
taining this information are also produced (see Note 21). Output
also includes localization densities for each cluster, which are
contained in separate directories (cluster.0, cluster.1, . . .).
Within these directories are a representative RMF file cluster_-
center_model.rmf3 and localization densities for each subunit
defined in the density_ranges.txt file (see Note 22).

4.5.3 Visualizing Models The cluster RMF files and localization densities can be visualized
using UCSF Chimera version �1.13. Example scripts for visualiz-
ing all localization densities are provided in ./analysis/
scripts/chimera_scripts.

At this point, one must decide if the models are helpful in
answering our biological questions. In the case of this tutorial,
the PPI is localized to within a few Å, and we can make predictions
as to what residues may be important for this interaction. If our
models are not resolved well enough, then more information may
have to be added through additional experiments, addition of
constraints to the sampling, change in system representation,
and/or additional sampling. We can iterate this process until we
are satisfied with our output models.

4.5.4 Additional Model

Validation

Additional validation of the final model ensemble can be performed
by rerunning the above protocol while omitting one or more of the
input data points. Ideally, models generated with only a subset of
the data will not differ significantly from the original models.
Further, any information not used in the modeling process can be
used as a validation of the final model ensemble (Subheading 2.4).
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4.6 Storing and

Reporting Results

in the wwPDB

For our modeling to be reproducible—a key requirement for the
four-stage modeling procedure (Fig. 1) and for science in general—
the modeling protocol, all of the input data we used, and the final
output models, should be deposited in a public location, ideally the
nascent PDB-Dev repository (https://pdb-dev.wwpdb.org/).

4.6.1 Modeling Protocol The modeling protocol includes the entire procedure of converting
raw input data to output models, and so comprises both the set of
IMP Python scripts described above and any procedures used to
prepare IMP inputs, such as comparative modeling of subunits,
segmentation of an EM density, and processing of XL-MS data to
get a set of proximate residues. An excellent way to store and
disseminate such a protocol is by using a source control system
with a publicly accessible web frontend, such as GitHub (as is used
for this tutorial). Integrative modeling is an inherently collaborative
process. Source control makes it straightforward to track changes
to all of the protocol scripts and data by local and remote colla-
borators. All protocol files should be deposited in a permanent
location with a fixed Digital Object Identifier (DOI). A number
of free services are available for deposition of such files, such as
Zenodo (https://zenodo.org) and FigShare (https://figshare.
com), where a snapshot of a GitHub repository for the published
work can be deposited. For an example, see ref. 38.

4.6.2 Input Data Each piece of input data used should also be publicly available.
Where possible, these data should be deposited in a repository
specific to the given experimental technique and referenced from
the model mmCIF file. For example, all of the crystal structures
used in this example are simply referenced by their PDB IDs. Where
such a repository does not exist, the data files should be made
available at a DOI. The simplest way to archive these files is to
store them in the same GitHub repository used for the modeling
protocol. If derived data are used, the modeling protocol should
indicate where the original raw data came from.

4.6.3 Output Models A decision needs to be made about which models to deposit.
Generally, a representative sample of each cluster should be depos-
ited, together with the localization densities of the entire cluster.

The mmCIF file format allows for multiple models, potentially
at multiple scales, in multiple states, and/or different time points,
to be stored in a single file together with pointers to the input data
and modeling protocol. Implementation of this format in IMP is
still under development. The functionality will extract information
from the RMF files output by the IMP modeling and combine it
with metadata extracted from each experimental input. This file can
be visualized in UCSF ChimeraX [39], and similar files from real
modeling runs can be deposited in PDB-Dev and cited in
publications.
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Fig. 6 Results for sampling exhaustiveness protocol for modeling in complex of actin and tropomodulin–gel-
solin chimera. (a) Results of test 1, convergence of the model score, for the 1618 good-scoring models; the
scores do not continue to improve as more models are computed essentially independently. The error bar
represents the standard deviations of the best scores, estimated by repeating sampling of models ten times.
The red dotted line indicates a lower bound reference on the total score. (b) Results of test 2, testing similarity
of model score distributions between samples 1 (red) and 2 (blue); the difference in distribution of scores is
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5 Notes

1. Other sampling methods include Rapidly Exploring Random
Trees (RRT) for searching dihedral space [40], divide-and-
conquer message passing methods [41] for large discrete
spaces, conjugate gradients, and molecular dynamics.

2. In this case, the user may reformulate the representation by
adding a state to the system (see Note 8).

3. In general, an ensemble of models can be visualized as a locali-
zation probability density map (localization density). The map
specifies the probability of any volume element being occupied
by a given bead in superposed good scoring models.

4. Simulated EMmaps can be created in IMP using the following
command: simulate_density_from_pdb <file.pdb>
<output.mrc> <resolution> <a/pixel>

5. Spherical beads are applied to every ten residues with smaller
beads applied to loops of smaller length.

6. These residues are also assigned to rigid_body 1 to improve
sampling. All beads within rigid bodies are, by default, allowed
to be flexible.

7. The file ./modeling/modeling_manual.py contains this
exact system built manually using PMI commands instead of
a topology file. PMI commands allow significantly more flexi-
bility in model design.

8. To add a second state with the same topology, this line can be
repeated, or to use a different topology, bs.add_state(t2)
can be invoked with a different topology file.

9. For coarse-grained models, a molecular mechanics force field is
not applicable. However, the CHARMM force field can be

�

Fig. 6 (continued) significant (Kolmogorov-Smirnov two-sample test p-value less than 0.05) but the magni-
tude of the difference is small (the Kolmogorov-Smirnov two-sample test statistic D is 0.02); thus, the two
score distributions are effectively equal. (c) Results of test 3, three criteria for determining the sampling
precision (Y-axis), evaluated as a function of the RMSD clustering threshold (X-axis). First, the p-value is
computed using the χ2-test for homogeneity of proportions (red dots). Second, an effect size for the χ2-test is
quantified by the Cramer’s V value (blue squares). Third, the population of models in sufficiently large clusters
(containing at least ten models from each sample) is shown as green triangles. The vertical dotted gray line
indicates the RMSD clustering threshold at which three conditions are satisfied ( p-value >0.05 [dotted red
line], Cramer’s V< 0.10 [dotted blue line], and the population of clustered models>0.80 [dotted green line]),
thus defining the sampling precision of 3.5 Å. (d) Populations of sample 1 and 2 models in the clusters
obtained by threshold-based clustering using the RMSD threshold of 3.5 Å. Cluster precision is shown for each
cluster. (e, f) Results of test 4: comparison of localization probability densities of models from sample A and
sample B for the major cluster (84% population). The cross-correlation of the density maps of the two samples
is 0.99 for the gelsolin (red) and tropomysin (blue) maps and 0.97 for the actin map (green)
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applied to enforce stereochemistry on atomic models. See the
examples in the IMP.atom module to learn how to implement
this restraint.

10. Model SAXS profiles can be computed using residues, CA
atoms, heavy atoms, or all atoms, depending on the resolution
of the model. The recommended maxq values are dependent
on this choice. At residue resolution, the fit is only valid up
until q ~ 0.15; for heavy atoms q¼ 0.4; and for all atoms, the fit
is valid out to q ¼ 1.0 (the maximum value).

11. See derived_xls.dat and the modeling.py script for a
more in-depth explanation of crosslink keys.

12. The shuffle algorithm fails if it cannot find a configuration
without any overlap between components. If this happens,
try increasing the max_translation parameter. Do not set
this too high as you will spend way too much time getting your
system to move back together.

13. A list of acceptable keywords can be determined by running
../scripts/plot_stat.py ./path/to/stat/file�pk.

14. For scores whose thresholds are not known a priori, one can
perform a multistage filtering process as outlined in the above
protocol.

15. Currently, the choice of filtering criteria is very subjective.
Ideally, a fully Bayesian framework will allow for objective
weighting of different restraints and allow for filtering at single
likelihood. Until then, the choice of a score or parameter that
represents a “good scoring model” should be carefully thought
out by the modeler and reported in the text.

16. In general, we require at least 1000 or more models for asses-
sing sampling exhaustiveness. Our score thresholds were cho-
sen in order to have a reasonable number (1000–20,000)
models for analysis. If we have too few models, the satisfaction
criteria should be relaxed, or more sampling should be per-
formed to find more satisfactory models. Too many models
(>20,000) will make subsequent processing more computa-
tionally intensive; in this case, satisfaction criteria can be made
stricter, or one can pass a random subset of these models to the
sampling convergence protocol.

17. An explanation of the PMI selection format can be found at
https://github.com/salilab/pmi/wiki/PMI-Tuple-Selection-
Format

18. One can choose whether to align models (�a option) or not.
Alignment of models is sometimes not necessary, for example,
when one has a medium resolution or better EM map.

19. For calculating sampling precision, the grid size is the step size
at which clustering is performed between the minimum and
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maximumRMSDs in the dataset. This tutorial uses 0.1 Å to get
a very precise estimate of the sampling precision; however, this
results in a very long calculation. In practice, especially for
larger systems whose sampling precision will be much lower,
one would choose a larger value to make calculation more
efficient.

20. If alignment is necessary, the GPUmode of pyRMSD generally
increases performance significantly. It is invoked by using �m
cuda.

21. The output of the protocol can be readily plotted using any
plotting software. Example scripts in ./analysis/scripts/
gnuplot_scripts can be used to obtain the plots in Fig. 6.

22. Sometimes, there are too many clusters to visualize at the
determined sampling precision. In this case, we can rerun
clustering using a threshold worse than the sampling precision
to get fewer clusters to visualize. In that case, the skip option
(�s) along with the value of clustering threshold (�ct) allows
one to bypass RMSD and sampling precision calculation and
get the clusters and their densities, as follows: python ../
scripts/Master_Sampling_Exhaustiveness_Analy-
sis.py �n actin �d density_custom.txt �ct 4.39 �a
�s. Note that this clustering threshold should always be
worse than the sampling precision.

23. Built-in Chimera color names can be found at: https://www.
cgl.ucsf.edu/chimera/docs/UsersGuide/colortables.html

24. These keywords are specifically for completely disordered
domains or short helical components. For IDEAL_HELIX, a
single helix will be created for that component.
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