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Assessing Exhaustiveness of Stochastic Sampling
for Integrative Modeling of Macromolecular
Structures
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ABSTRACT Modeling of macromolecular structures involves structural sampling guided by a scoring function, resulting in an
ensemble of good-scoring models. By necessity, the sampling is often stochastic, and must be exhaustive at a precision
sufficient for accurate modeling and assessment of model uncertainty. Therefore, the very first step in analyzing the ensemble
is an estimation of the highest precision at which the sampling is exhaustive. Here, we present an objective and automated
method for this task. As a proxy for sampling exhaustiveness, we evaluate whether two independently and stochastically gener-
ated sets of models are sufficiently similar. The protocol includes testing 1) convergence of the model score, 2) whether model
scores for the two samples were drawn from the same parent distribution, 3) whether each structural cluster includes models
from each sample proportionally to its size, and 4) whether there is sufficient structural similarity between the two model samples
in each cluster. The evaluation also provides the sampling precision, defined as the smallest clustering threshold that satisfies
the third, most stringent test. We validate the protocol with the aid of enumerated good-scoring models for five illustrative cases
of binary protein complexes. Passing the proposed four tests is necessary, but not sufficient for thorough sampling. The protocol
is general in nature and can be applied to the stochastic sampling of any set of models, not just structural models. In addition, the
tests can be used to stop stochastic sampling as soon as exhaustiveness at desired precision is reached, thereby improving
sampling efficiency; they may also help in selecting a model representation that is sufficiently detailed to be informative,
yet also sufficiently coarse for sampling to be exhaustive.
INTRODUCTION
Integrative structure determination is an approach for
characterizing the structures of large macromolecular as-
semblies that relies on multiple types of input information,
including from varied experiments, physical theories, and
statistical analysis (1–4). Therefore, it maximizes the accu-
racy, precision, completeness, and efficiency of structure
determination. Moreover, it can often produce a structure
for systems that are refractive to traditional structure deter-
mination methods (5–11), such as x-ray crystallography,
electron microscopy, and NMR spectroscopy. Integrative
structure determination proceeds in four stages. First, all
information that describes the system of interest, including
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data from wet lab experiments, statistical tendencies such
as atomic statistical potentials (12–14), and physical laws
such as molecular mechanics force fields (15,16), is
collected. Second, a suitable representation for the system
is chosen depending on the quantity and resolution of the
available information. The available information is then
translated into a set of spatial restraints on the components
of the system. The spatial restraints are combined into a sin-
gle scoring function that ranks alternative models based on
their agreement with input information. Third, the alterna-
tive models are sampled using a variety of techniques,
such as conjugate gradients, molecular dynamics, Monte
Carlo (17), and divide-and-conquer message passing
methods (18). The sampling generates an ensemble of
models that are as consistent with the input information as
possible. Finally, input information and output structures
need to be analyzed to estimate structure precision and
accuracy, detect inconsistent and missing information, and
suggest more informative future experiments. Assessment
begins with structural clustering of the modeled structures
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Sampling Exhaustiveness in Modeling
produced by sampling, followed by assessment of the thor-
oughness of structural sampling, estimating structure preci-
sion based on variability in the ensemble of good-scoring
structures, quantification of the structure fit to the input in-
formation, structure assessment by cross-validation, and
structure assessment by data not used to compute it. Integra-
tive modeling can iterate through these four stages until a
satisfactory model is built.

A key challenge in integrative modeling of biomolecular
structures is to map the complete ensemble of models
consistent with the input information (good-scoring models)
(1,2,19,20). The variation among the models in this
ensemble quantifies the uncertainty of modeling (model
precision). Because sampling large macromolecular sys-
tems is often necessarily stochastic, we can only aim to
find representative good-scoring models. These representa-
tive models sample all good-scoring models at some preci-
sion, which we define as the sampling precision. Clearly, the
sampling precision imposes a lower limit on the model
precision. Therefore, exhaustive sampling of good-scoring
models is a prerequisite for accurate modeling and assess-
ment of model precision. Sampling is exhaustive at a certain
precision when it generates all sufficiently good-scoring
models at this precision. Importantly, sampling exhaustive-
ness and sampling precision are invariably intertwined.
There is always a precision at which any sampling is
exhaustive; for example, even a single structure provides
an exhaustive sample at a precision worse than the scale
of the system.

Accurate estimation of model precision is key in assess-
ing an integrative structure. It is perhaps more important
to assess the precision of a model than to compute a model
in the first place. The reason is that the utility of a model is
determined significantly by its precision. First, model preci-
sion provides an estimate of the aggregate uncertainty in the
input information; second, it likely provides the lower
bound on model accuracy; finally, applications of models
strongly depend on their accuracy, with different applica-
tions having varied requirements for accuracy and precision
(20–22). Further, only when model precision is estimated
accurately, can the model be used to inform future choices,
such as whether to gather more data, change the system
representation, scoring functions, or sampling algorithms.
Commonly used structural features for estimating model
precision include the particle positions, distances, and
contacts (5,6,23,24), although specific systems may benefit
from the use of derived features, such as the distance to a
membrane in a transmembrane assembly. Of particular
interest are the features that have a single maximum in their
probability distribution. The spread around the maximum
describes how precisely the feature was determined by the
input information.

Sampling convergence in Monte Carlo simulations for
protein and RNA structure prediction has been assessed
by checking for abundance of structures close to the lowest
energy structure(s) (25–32). Convergence in molecular
dynamics (MD) simulations has been measured by counting
the number of structural clusters (33–35) and their relative
populations (36–40), cosine of the principal components
(41), distance between the free energy surfaces of different
parts of the simulation (42), and drift in the free energies
(43). Some methods assess convergence in MD simulations
by comparing different trajectories via a difference in
populations for each cluster (36–40). For example, models
from a ‘‘reference’’ simulation are first clustered based on
a predetermined cutoff (38), followed by assigning models
from additional simulation to the nearest cluster in the refer-
ence simulation; thus, each simulation produces a histogram
of populations of clusters that enables comparison of any
two simulations.

As mentioned above, testing for sampling exhaustiveness
is the first step of the analysis and validation stage of our
four-stage integrative modeling process, immediately
following the sampling stage (2,4,7–9,44). Here, we present
an objective and automated protocol that aims to estimate
the precision at which sampling is exhaustive, thereby
assessing sampling exhaustiveness for integrative structural
modeling. As a proxy for assessing sampling exhaustive-
ness, we evaluate whether or not two independently and
stochastically generated sets of models (model samples)
are sufficiently similar. Model samples for assessment can
be obtained, for example, from two independent simulations
using random starting models or different random number
generator seeds. The protocol for evaluating exhaustiveness
includes two tests that consider the model scores, followed
by two tests that consider the model structures.

There are at least two major limitations of our approach.
First, sampling convergence is at best an approximation of
sampling exhaustiveness. Although similarity between
independent model samples does indicate sampling conver-
gence, we can only hypothesize that the convergence of
stochastic sampling at some precision also indicates sam-
pling exhaustiveness at that precision, for scoring function
landscapes like those used in integrative structure modeling
(many dimensions, rugged, few major minima). This
hypothesis is supported by all five examined cases of binary
docking solutions enumerated at a specified precision.
Accordingly, passing the proposed tests is a necessary, but
not sufficient condition for exhaustive sampling; a positive
outcome of the test may be misleading if, for example, the
landscape contains only a narrow, and thus difficult to
find, pathway to the pronounced minimum corresponding
to the native state. Second, our tests are also not applicable
to methods whose sampling is not stochastic (e.g., a conju-
gate gradients minimization from a fixed unique starting
point) or so expensive that they cannot generate a large
enough sample of independent models.

The rest of the article is organized as follows. In Methods,
we describe the four-part protocol for estimating sampling
precision and assessing sampling exhaustiveness, including
Biophysical Journal 113, 2344–2353, December 5, 2017 2345
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its application to five illustrative cases of binary protein
complexes. In Results, we demonstrate the protocol on the
illustrative cases and validate it by comparing stochastic
model samples with models from exhaustive enumeration
using rigid docking (45,46). Parameters of the protocol, its
applicability and uses, its shortcomings, the relationship
between various kinds of precision in integrative modeling,
relation to prior work, and future work are addressed in
Discussion.
METHODS

The protocol for estimating sampling precision and assessing sampling

exhaustiveness (Fig. 1) consists of four tests that are increasingly stringent;

each test needs to be passed before it makes sense to proceed to the next

test. Given two model samples and their scores as input, the tests check 1)

convergence of the model score, 2) whether model scores for the two model

samples were drawn from the same parent distribution, 3) whether each

structural cluster includes models from each sample proportionally to its

size, and 4) whether there is sufficient structural similarity between the

two model samples in each cluster. Next, each step in the flowchart

(Fig. 1) is described in turn.
FIGURE 1 Flowchart of the protocol for estimating sampling precision

and assessing sampling exhaustiveness.
Generating inputs for the protocol

The necessary input for the protocol is two model samples of approximately

equal size and their scores. Each model sample consists of random,

independently generated models. Both model samples must be generated

using the same sampling method. In integrative structure modeling, we

are generally not interested in all sampled models, but only in models

that are good-scoring (i.e., those that are sufficiently consistent with input

information) (2,4,7–9,44).

The precise definition of good-scoring models is left to the user and can

be application-dependent. Example choices include all models scoring

better than a threshold on the total score (2,4,7–9,44), or all models satis-

fying all types of input information within acceptable thresholds. For

example, if a protein complex is modeled by fitting its components into

an electron microscopy density map subject to cross-linking, excluded

volume, and sequence connectivity, the corresponding scoring function

can be a sum of the correlation coefficient between the EM map and a

model as well as harmonic (Gaussian) restraints for chemical cross-links,

pairs of overlapping atoms, and sequence connectivity; a good-scoring

model can then be defined as a model that fits the EM density with a

cross-correlation >0.80 and violates (e.g., a restraint value > 2 SD from

the mean) a smaller number of harmonic restraints than expected for the

corresponding Gaussian distributions (e.g., 5%).

The samples are usually generated by a stochastic sampling algorithm.

One such algorithm is the Metropolis Monte Carlo scheme (47) that starts

from a different configuration and/or random number seed for each run. For

our purposes, a larger number of shorter runs is preferable over a smaller

number of longer runs for two reasons. First, a larger number of runs

benefits more easily from parallel execution than a smaller number of

runs. Second, independent runs are guaranteed to result in uncorrelated

models, whereas, additional care is needed to ensure the lack of correlation

for models from a single run.
Convergence of the best score

The first test assesses whether the best model score continues to improve as

more models are sampled. This test operates on random subsets of the

model scores of the two samples combined. Model score subsets of several

sizes (e.g., 20, 40, 60, 80%, and the complete set) are each created several
2346 Biophysical Journal 113, 2344–2353, December 5, 2017
times (replicates). The best score in each subset is averaged across the

replicates. Plotting the average best score for each model subset size shows

whether the best score converges as the number of models is increased.
Similarity of scores

The second test confirms that good-scoring models in the two model

samples have similar score distributions (i.e., satisfy the data equally

well). Specifically, the nonparametric Kolmogorov-Smirnov two-sample
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test (48,49) tests the null hypothesis that the distributions of model scores in

the two model samples were drawn from the same parent distribution. The p

value from the Kolmogorov-Smirnov two-sample test is a measure of the

statistical significance of the difference between the two distributions. A

p value lower than the cutoff of significance (usually 0.05) indicates that

the difference in the two score distributions is statistically significant.

Even a tiny difference between two distributions can be significant if the

samples are large (50,51). Therefore, we additionally use an effect size

measure for the Kolmogorov-Smirnov two-sample test. Conveniently, the

Kolmogorov-Smirnov two-sample test statistic, D, is itself a proportion

(48,49). The proportion ranges from 0 to 1, where 0 represents no difference

between the two samples and 1 no overlap between the two samples. A

value of 0.30 (medium effect size) or higher suggests that the two score

distributions are different (48,49).

Finally, we conclude that the score distributions are similar if the differ-

ence is not statistically significant (p value > 0.05) or if the difference is

significant (p value < 0.05) but its magnitude is small (D < 0.30).
FIGURE 2 Conceptual representation of the c2 test for sampling exhaus-

tiveness, showing models in a 2D coordinate space. Two independent equal-

sized random samples of good-scoring models are shown in red and blue.

Models in the two samples are clustered together. The gray circles indicate

cluster boundaries and the gray-scale indicates the density of models in the

cluster. The size of the circles indicates the clustering threshold. The test

assesses whether the proportion of models from the two samples (red and

blue) is similar in each significant cluster. Note that some models are shown

as open circles, indicating that these models belong to insignificant clusters

(i.e., small clusters containing few models).
Computing pairwise root-mean-square deviations

The third test assesses whether models from each sample are present in

each structural cluster proportionally to the sample size;when the sample sizes

are equal, each cluster should contain approximately the same number of

models from each sample. The test requires clusteringmodels from both sam-

ples combined. Itmay be necessary to select sufficiently small random subsets

of the two model samples, to make clustering computationally feasible.

The first step of clustering is to compute root-mean-square deviation

(RMSD) values between all pairs of models from both samples combined

(8):

RMSDi;j ¼
�Xb

k¼ 1
nk
�
~xi;k �~xj;k

�2.Xb

k¼ 1
nk

�1=2
where~xi;k is the Cartesian coordinate of the kth of b beads in model i, nk is
the number of residues in bead k, and n is the total number of models; other

structural dissimilarity or similarity measures may be used.
Finding the sampling precision

A stochastic sampling method does not enumerate all good-scoring models,

but generates only a sample of them. Here, the sampling precision is defined

as the radius of the clusters in the finest clustering for which each sample

contributes models proportionally to its size (considering both significance

and magnitude of the difference) and for which a sufficient proportion of all

models occur in sufficiently large clusters (Fig. 2).
Clustering models using several thresholds

To find the sampling precision, we evaluate increasingly coarser cluster-

ings, obtained using the following threshold-based clustering method

(33). For each model, we first find all neighboring models, defined as

models whose RMSD distance (above) from the model is less than the input

threshold. Initially all models are unclustered. The unclustered model with

the maximum number of neighbors and its neighbors are added to form a

new cluster, and the list of unclustered models is updated. The last step is

repeated until no unclustered models remain. This clustering is performed

for all thresholds sampling the interval between the minimum and

maximum RMSDs in steps of 2.5 Å. The next three paragraphs describe

the three criteria evaluated for each clustering.

Significance. To assess the significance of the difference between the pro-

portions of each sample in the clusters, we use the c2 test for homogeneity

of proportions (52). This test evaluates the null hypothesis that the two

model samples are distributed nearly equally (for equal-sized samples) or
approximately in proportion to their sizes (for unequal sized samples) in

all major clusters. The p value from the test is a measure of the statistical

significance of proportionate contributions to clusters from both samples.

A p value lower than the cutoff of significance (usually 0.05) indicates

that the difference in the two distributions is statistically significant.

Magnitude. To assess the magnitude of the difference between the pro-

portions of each sample in the clusters, we use an effect size measure for

the c2 test, Cramer’s V (53). This test measures the magnitude of the differ-

ence between the distributions of the two samples across clusters. Cramer’s

V is defined as
ffiffiffiffiffiffiffiffiffiffi
c2=n

p
, where c2 is the c2 test metric and n is the total num-

ber of models in both samples. A value of Vof at least 0.1 suggests that the

difference between the two distributions is large; it corresponds approxi-

mately to a p value of 0.05 for the case of two clusters and 500 models

per sample.

Population. The calculation of the p value and Cramer’s V requires that

each sample has at least 10 expected models per cluster (54). Therefore, we

remove all clusters containing<10 models from either sample. To allow us

to proceed with the assessment, we also require that at least 80% of the

models remain after this removal.
Computing precision of clusters

For defining clusters and visualization, any threshold equal to or worse than

the sampling precision can be chosen. The sampling precision is the small-

est clustering threshold at which sampling is exhaustive; choosing a larger

threshold will result in fewer, larger clusters, and may be preferable for

analysis and/or visualization.

Although the sampling precision limits the maximum radius of a cluster

(Fig. 2), models could be more tightly distributed inside a cluster. To
Biophysical Journal 113, 2344–2353, December 5, 2017 2347
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quantify the actual spread of models in clusters, we define the cluster pre-

cision as the weighted root-mean-square fluctuation (RMSF) of all models

in the cluster. Weighted RMSF accounts for differing sizes of beads often

used to represent integrative structures (8,55). It is computed using

�
RMSF2

�1=2¼
" Xb

n¼ 1

nk
Xn
i¼ 1

ð~xi;k�hxkiÞ2
!,

n

 Xb
k¼ 1

nk

!!1=2

:

The cluster precision is �1.4 times the sampling precision, reflecting the

general relationship between RMSD and RMSF (8,55).
Computing localization densities and their cross
correlation

The final test involves computing the cross correlation between the model

densities from each sample, for each cluster. The density maps are created

at a resolution equal to the threshold used for defining clusters (above). The

cross-correlation coefficients between the maps are calculated using the

software UCSF Chimera (56).
Validation of the protocol

We illustrate our protocol by relying on five binary protein complexes of

known structure from the ZDOCK Benchmark 4.0 (57), spanning a range

of docking difficulty, and 5–7 simulated distance restraints per complex.

We modeled the structure of each complex by stochastic sampling as imple-

mented in an integrative modeling platform (IMP; Supporting Material).

We assessed the sampling exhaustiveness protocol based on a comparison

of stochastic sampling with exhaustive enumeration, as follows.

The quality of the sampling exhaustiveness protocol is quantified by

the fraction of good-scoring models from exhaustive enumeration

(below) that are located within any sufficiently large cluster of the

good-scoring models from the tested sampling, for the clustering

threshold equal to the tested sampling precision; an enumerated model

is located in a cluster, if its distance to the cluster center is within the

tested sampling precision.

Fast-Fourier transform-based protein docking algorithms (45,58–60)

efficiently construct models of binary protein complexes by enumerating

all possible rigid rotations and translations on a uniform 3D grid. The set

of all models (57) produced by �1.2 Å and 6� uniform sampling on an

FFT grid was used. Good-scoring models from enumeration were identified

as in stochastic sampling (models for which at least 90% of cross-links span

a Ca-Ca distance of<12 Å). For each good-scoring ZDOCKmodel, its dis-

tance to the nearest major cluster center from IMP was calculated.

The distribution of models from stochastic sampling in IMP cannot be

compared directly to enumerated models computed by ZDOCK. The

ZDOCK models are enumerated on a uniform grid, whereas IMP samples

the posterior probability of models and therefore produces a nonuniform

model distribution. In addition, ZDOCK and IMP use different representa-

tions (atomic and coarse-grained, respectively).
RESULTS

We demonstrate the sampling exhaustiveness protocol on an
example from the Protein Data Bank (PDB), 1AVX. The
remaining four examples are described in Figs. S1–S5.

There are 3369good-scoringmodels for PDB: 1AVX(1896
in sample 1 and 1473 in sample 2). The score convergence test
shows that the best score does not continue to improve signif-
icantly with an increase in the number of models sampled
2348 Biophysical Journal 113, 2344–2353, December 5, 2017
(Fig. 3 A; to visualize the relatively rapid convergence in
model scores, see Fig. S6). The two score distributions are
similar to each other, as shown by the overlap in the score his-
tograms and the insignificant p value and small D value from
the Kolmogorov-Smirnov two-sample test (Fig. 3 B).

Next, exhaustiveness is examined at varying thresholds be-
tween the minimum and maximum RMSDs of 0.43 and
42.93 Å (Fig. 3 C; Table 1). Based on the p value, Cramer’s
V, and the population of models in the contingency table,
the c2 test is satisfied from the threshold of 12.93 Å onwards
(Table 1). Hence, the sampling precision is 12.93 Å. In gen-
eral, stricter (smaller) clustering thresholds result in many
small clusters, which are ignored (Table 1, last column;
Fig. 3 C). In contrast, more lenient (larger) clustering
thresholds result in fewer, larger clusters that are more
likely to be retained in the analysis. For example, for the
lowest clustering thresholdof0.43 Å, eachmodel is in its own -
cluster and hence all clusters are small and eliminated from
the contingency table. In contrast, for thresholds >25.43 Å
(Fig. 3 C), only one cluster containing all models remains.

Finally, we chose the sampling precision as the clustering
threshold for visualizing clusters. Inspection of the cluster
populations (Fig. 3 D) shows that they are similar for the
two samples. The sampling precision is �1.4 times the
cluster precision, as expected from the general relationship
between RMSD and RMSF (Methods; (55)). The agreement
between the localization densities for samples 1 and 2
(Fig. 3, E and F) is demonstrated by the high cross-correla-
tion coefficient of 0.99 for each cluster.
Validation by comparison to exhaustive
enumeration

The sampling exhaustiveness protocol was validated by
showing that 99.2% of the good-scoring ZDOCK models
were within an IMP cluster for PDB: 1AVX (Fig. 4); the
corresponding fraction was 100% for the other four exam-
ples (Fig. S5). For PDB: 1AVX, out of 510 good-scoring
ZDOCK models, 506 were within the sampling precision
of the center of a significant cluster and the distances for
the other four models were less than one grid spacing further
away (Fig. 4). Similarly, the largest distances between
good-scoring ZDOCK and IMP models were 1.52, 3.96,
1.56, and 0.96 Å short of their sampling precisions for
PDB: 1I2M, 1SYX, 2IDO, and 7CEI, respectively
(Fig. S5). In conclusion, the sampling exhaustiveness proto-
col neither overestimates nor underestimates the sampling
precision, for the five examined cases.
DISCUSSION

Summary of the protocol

Accurate assessment of model uncertainty in integrative
modeling necessitates that sampling is exhaustive at a



FIGURE 3 Results for sampling exhaustiveness

protocol for PDB: 1AVX. (A) Shown here are re-

sults of test 1, convergence of the model score,

for the 3369 good-scoring models; the scores do

not continue to improve as more models are

computed essentially independently. The error

bar represents the SD of the best scores, estimated

by repeating sampling of models 10 times. The red

dotted line indicates a lower bound on the total

score. (B) Shown here are results of test 2, testing

similarity of model score distributions between

samples 1 (red) and 2 (blue); the difference in

distribution of scores is not significant (Kolmo-

gorov-Smirnov two-sample test p value > 0.05)

and the magnitude of the difference is small (the

Kolmogorov-Smirnov two-sample test statistic D

is 0.02); thus, the two score distributions are effec-

tively equal. (C) Shown here are results of test 3,

containing three criteria for determining the sam-

pling precision (y axis), evaluated as a function

of the RMSD clustering threshold (33) (x axis).

First, the p value is computed using the c2 test

for homogeneity of proportions (52) (red dots).

Second, an effect size for the c2 test is quantified

by the Cramer’s V value (blue squares). Third,

the population of models in sufficiently large clus-

ters (containing at least 10 models from each

sample) is shown as green triangles. The vertical

dotted gray line indicates the RMSD clustering

threshold at which three conditions are satisfied

(p value > 0.05 (dotted red line), Cramer’s

V < 0.10 (dotted blue line), and the population of

clustered models > 0.80 (dotted green line)),

thus defining the sampling precision of 12.93 Å.

(D) Populations of sample 1 and 2 models in the

clusters are obtained by threshold-based clustering

using the RMSD threshold of 12.93 Å. Cluster

precision is shown for each cluster. (E and F)

Shown here are results of test 4: comparison of

localization probability densities of models from

sample 1 (red) and sample 2 (blue) in each cluster.

The density map of the receptor, which is kept

fixed through the simulation, is shown in gray.

All densities were visualized at a threshold equal

to one-third the maximum. The cross-correlation

of the density maps of the two samples is

0.99 for each of the three clusters.
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precision sufficient for assessing model uncertainty. In this
article, we introduce a protocol for determining the sam-
pling precision of integrative structural models computed
by a stochastic sampling algorithm. The protocol requires
two samples of independently and stochastically generated
sets of models and their scores. It includes two tests for
convergence of the score and two tests for convergence of
the structures. The tests for score convergence assess
whether the scores in the two samples are from similar
distributions. The tests for structural convergence rely on
structural clustering of the models, followed by assessing
whether the models in the two samples are distributed
similarly across the clusters. The five illustrative cases
demonstrate the relative accuracy of the sampling exhaus-
tiveness protocol (Figs. 3 and 4; Figs. S1–S5). Below,
we discuss the parameters used in the protocol, and its
applicability, shortcomings, and relationship among various
kinds of precision in integrative modeling; we then address
overfitting in integrative modeling, relation to prior work,
and future work.
Parameters

All parameters used in the protocol are listed next; their
values are chosen based on rules-of-thumb in statistics
literature. First, the significance cutoff for the KS test is
0.05 and the magnitude cutoff for the KS statistic, D, is
0.3, the latter corresponding to medium effect size (49).
Biophysical Journal 113, 2344–2353, December 5, 2017 2349



TABLE 1 Three Criteria for Determining the Sampling

Precision for PDB: 1AVX, Evaluated as a Function of the

Clustering Threshold

Threshold in

Ångstroms p Value Cramer’s V

Population of Models in

Contingency Table [%]

0.4 0.0 1.0 0.0

2.9 0.0 0.1 10.1

5.4 0.0 0.2 82.7

7.9 0.0 0.2 96.2

10.4 0.0 0.1 98.7

12.9 0.3 0.0 98.7

15.4 0.5 0.0 98.7

17.9 1.0 0.0 98.8

20.4 1.0 0.0 99.8

22.9 1.0 0.0 100.0

25.4 1.0 0.0 100.0

27.9 1.0 0.0 100.0

30.4 1.0 0.0 100.0

32.9 1.0 0.0 100.0

35.4 1.0 0.0 100.0

37.9 1.0 0.0 100.0

40.4 1.0 0.0 100.0

42.9 1.0 0.0 100.0

The three criteria are 1) p values and 2) Cramer’s V, both from the c2 test;

and 3) the population of models in the contingency table after eliminating

small clusters.

Viswanath et al.
Second, due to the inability of the c2 test to handle small
expected cell counts, we eliminate clusters with <10 models
for either sample from the contingency table for the test, as
recommended (54). Third, because we are eliminating these
small clusters, we additionally check if the population of
models remaining in the contingency table from both
samples is >80%. Finally, the significance cutoff for the c2

test is 0.05 and the magnitude cutoff on Cramer’s V is 0.1,
FIGURE 4 Histogram showing the distribution of distance (measured

by weighted ligand RMSD) of a good-scoring PDB: 1AVX model from

enumeration (ZDOCK) to the nearest cluster centroid model from stochas-

tic sampling (IMP). The dotted line indicates the sampling precision for the

IMP model sample determined by the sampling exhaustiveness protocol.

2350 Biophysical Journal 113, 2344–2353, December 5, 2017
the latter corresponding approximately to a p value of 0.05
for the case of two clusters and 500 models per sample.
Applicability and uses

The sampling exhaustiveness protocol is broadly applicable
to a range of sampling methods, a range of clustering or
binning methods, features of models other than model
scores, and models other than macromolecular structures,
and it can be used dynamically during sampling to stop as
soon as desired sampling precision is reached, as follows.

First, any stochastic sampling method that generates a
large number of independent model samples is appropriate.
Metropolis Monte Carlo sampling can satisfy this require-
ment of independence by 1) sampling models from multiple
independent trajectories (e.g., starting from different
random initial configurations) and 2) sampling models at
sufficiently distant intervals on a single trajectory, such
that samples are effectively uncorrelated with each other.
The sampling exhaustiveness protocol can only compare
model samples produced by the same sampling algorithm
(e.g., samples from uniform sampling and importance
sampling are clearly not directly comparable).

Second, any one of the variety of clustering or binning
methods for grouping models based on their similarity could
be used instead of the distance threshold-based clustering.
In principle, even a uniform grid could be applied to bin
the models. This clustering is used as a relatively rapid
method to assign most models to a relatively small number
of groups of similar precision. As a result, we can easily
quantify the sampling precision across the entire space of
models and convey the results in terms of a small number
of model clusters. In contrast, for example, k-means
clustering generally results in clusters of varying precision,
thus obfuscating the relationship between the cluster preci-
sion and sampling precision.

Third, any quantity of interest, such as radius of gyration
and distance to a membrane, can be tested in the same
manner as the model scores here.

Fourth, the protocol is applicable to stochastic sampling
of any kind of a model, not just a structural model.

Fifth, and finally, the protocol can be applied to estimate
sampling precision dynamically during a simulation, so
that sampling is stopped as soon as desired sampling
precision is reached, maximizing sampling efficiency.
Assessment of exhaustiveness is particularly important for
modeling large systems with many degrees of freedom,
where exhaustive sampling of representative good-scoring
solutions is particularly difficult.
Critique

In the absence of enumeration, exhaustiveness of stochastic
sampling cannot be proved with complete certainty. There-
fore, we suggest that even a statistical test such as the one
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proposed here is better than no test. As a proxy for assessing
exhaustiveness, our protocol evaluates whether two indepen-
dent random model samples are similar to each other (Intro-
duction). Our tests are not applicable to methods that do not
generate independent random samples (e.g., a conjugate gra-
dients minimization from a fixed unique starting point), or are
so expensive that they cannot generate a large enough sample
of independentmodels. Further, passing the proposed tests is a
necessary, but not sufficient, condition for exhaustive sam-
pling; a positive outcome of the test may be misleading if,
for example, the landscape contains only a narrow, and thus
difficult to find, pathway to the pronounced minimum corre-
sponding to the native state. Nevertheless, based on the five
examples, we argue that convergence of stochastic sampling
at some precision often also indicates sampling exhaustive-
ness at that precision.
Precision in integrative modeling

In this article, we used the model (ensemble) precision, sam-
pling precision, and cluster precision. In addition, the data pre-
cision (uncertainty) reflects the experimental noise (systematic
and random error) (4); and the representation precision can
be defined, for example, by the diameter of the largest
primitive (Gaussian, bead) used to represent the system. We
now discuss these five precisions in the context of each other.

First, the sampling precision imposes a lower limit on
the model precision. The shape of the scoring function
landscape at precisions better than the sampling precision
is not sampled accurately by definition; thus, any features
of the model landscape more precise than the sampling pre-
cision are unlikely to be estimated accurately.

Second, because the model ensemble is divided into one
or more clusters, the model precision is always equal to or
worse than any cluster precision.

Third, for the final description of the model ensemble, it
only makes sense to cluster the models using a clustering
threshold that is equal to or larger than the sampling preci-
sion (due to the first point above; see Fig. 4).

Fourth, and lastly, the sampling precision is in turn
limited by the representation precision and data precisions.
Although the model, sampling, and cluster precisions, as
defined here, are directly comparable to each other, the rep-
resentation and data precisions are defined on different
scales. Nevertheless, qualitatively speaking, the sampling
precision cannot be significantly higher than the representa-
tion and data precisions; moreover, it is likely not beneficial
to use a representation with a precision that is significantly
higher than the data precision.
Addressing overfitting in integrative structure
modeling

Overinterpretation of the data (overfitting) is a frequent
concern in any modeling. For example, a single high-resolu-
tion atomic model may fit an EM density map at intermedi-
ate resolution well; proposing such a model as the solution is
often a case of overfitting because there are likely many
other atomic models that also fit the data equally well.
Our sampling exhaustiveness test provides a potential insur-
ance against overfitting. When a test is passed, overfitting is
not a problem (at the sampling precision) because all models
(at this precision) that are consistent with the data are pro-
vided in the output model ensemble.
Relation to prior work

The methods most related to that in this article, applied in
the context of MD simulations, are those in (36–39) (also
used in (40)). In (36,37), models from multiple MD sim-
ulations are combined and compared in terms of their rela-
tive populations. In (38), a new simulation is compared
against a reference simulation, by clustering models
from the reference simulation based on a predetermined
cutoff. The models of the new simulation are then as-
signed to the nearest cluster from the reference simulation.
Thus, each simulation produces a histogram of popula-
tions across clusters and any two simulations can be
compared by the difference in their populations for each
cluster. In (39), this method is expanded by computing
the number of independent samples in an MD trajectory
as a way of assessing the sampling quality. The number
of independent samples in an MD simulation is deter-
mined by comparing the observed variance in the popula-
tion of a cluster to the expected analytical variance from
an independent and identically distributed sample, for
various subsample sizes.

Our protocol additionally determines the significance
and magnitude of the difference in population distributions
across clusters, using the c2 test. More importantly, our
protocol also determines the sampling precision objec-
tively, by applying the c2 test for a range of clustering
thresholds (Figs. 3 and 4). Moreover, we test both score
convergence and convergence of structural coordinates
(Fig. 1). A few minor differences exist in our respective
clustering methods as well: 1) similarly to (36,37), we clus-
ter models from all simulations, potentially producing a
more comprehensive set of clusters, in contrast to clustering
only models from the reference simulation (38,39); and 2)
our cluster centers are chosen based on the density ofmodels
close to the cluster center, in contrast to choosing cluster
centers randomly (38), choosing clusters of uniform proba-
bility (39), or choosing cluster centers based on average
linkage with a similarity cutoff (36,37). Finally, our statisti-
cal test applies to independent samples from a stochastic
algorithm such as Monte Carlo sampling, whereas some
other methods do not require the samples to be independent
(36–40). Preliminary versions of our sampling exhaustive-
ness protocol have been already used in several integrative
modeling applications (9–11,61–63). Earlier, sampling
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exhaustiveness for integrative modeling was estimated, at
best, by manual visual inspection of localization densities
of clusters (7,8,44).
Future directions

Future directions include expanding this protocol to estab-
lish more detailed tests for exhaustiveness. For instance, it
will be useful to determine not just the sampling precision
for the entire macromolecular system, but also the sampling
precision for different components of the system (e.g.,
proteins, domains) separately. Such more detailed informa-
tion would be useful in the analysis stage of the iterative
four-stage integrative modeling process (2,4) to determine,
for instance, what representations to change and what input
data to reexamine to improve the sampling precision for the
entire system.

Structures of macromolecular systems are increasingly
computed by integrative modeling that relies on various
types of experimental data and theoretical information
(20). However, validation of integrative models and data is
a major open research challenge. It is particularly timely
because of the Worldwide Protein Data Bank effort to
expand the scope of its archive to integrative structures
(20). We suggest that a sampling exhaustiveness protocol,
such as the one described here, is the first assessment
applied to all integrative models.
Availability

Benchmark data and code used in this article are freely avail-
able at http://salilab.org/sampcon. The code relies on our
open source IMP package (http://integrativemodeling.org).
SUPPORTING MATERIAL

SupportingMaterials andMethods, six figures, and one table are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)31090-1.
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