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ABSTRACT

Novel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of trans-

membrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve

docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking pack-

ages. This membrane version of DOCK/PIERR is applied to the prediction of coiled-coil homodimer structures of the trans-

membrane region of the C-terminal peptide of amyloid precursor protein (C99). Results from MD simulation of the C99

homodimer in POPC bilayer and docking are compared. Docking results are found to capture key aspects of the homodimer

ensemble, including the existence of three topologically distinct conformers. Furthermore, the extended version of DOCK/

PIERR is successful in capturing the effects of solvation in membrane and micelle. Specifically, DOCK/PIERR reproduces

essential differences in the homodimer ensembles simulated in POPC bilayer and DPC micelle, where configurational

entropy and surface curvature effects bias the handedness and topology of the homodimer ensemble.
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INTRODUCTION

Predicting protein–protein interactions is a major goal

in computational structural biology. The total number of

proteins or genes in a genome is quite small (tens of

thousands), which is puzzling considering the observed

diversity of life. The prospects of abundant protein com-

plexes of variable number of individual chains open

many new possibilities for the natural design of diverse

molecular machines. Protein interactions add another

layer of useful complexity to the diversity of biological

systems.

Predicting protein–protein interactions is conducted

on multiple levels. We may start from the observation

that the function or expression of one protein impacts

the function or expression of the other and therefore

they interact. The “interaction,” however, can be indirect

and realized through the action of other molecular medi-

ators or promoters. Alternatively, the interaction can be

made through a direct physical contact. In the present

manuscript we focus on the latter. Given that two pro-

teins are physically proximate and in contact, the deter-

mination of their three-dimensional structure is of

considerable interest.

A number of theories, algorithms, and programs are

available to predict the structures of protein complexes

given the structures of the individual monomers.1–4 The

structures of the monomers need not be very precise and

homology models have been used effectively in the past

Grant sponsor: National Science Foundation; Grant numbers: CHE-1114676,

CHE-1362524, CCF-0833162; Grant sponsor: National Institutes of Health; Grant

number: RO1 GM076688; Grant sponsor: Welch Foundation; Grant number:

F-1783; Grant sponsors: Schlumberger Foundation “Faculty for the Future

Program”; CONACYT.

*Correspondence to: Ron Elber, 201 East 24th St. STOP C0200, Austin, TX

78712-1229. E-mail: ron@ices.utexas.edu

Received 16 June 2015; Revised 13 September 2015; Accepted 17 September 2015

Published online 24 September 2015 in Wiley Online Library (wileyonlinelibrary.

com). DOI: 10.1002/prot.24934

2170 PROTEINS VVC 2015 WILEY PERIODICALS, INC.



to create accurate structures of complexes (so called

unbound docking5,6). These approaches usually focus on

complexes found in aqueous solution for which more

experimental data is available to learn parameter sets of

the scoring functions and to test the theoretical predic-

tions. However, predicting the structures of protein com-

plexes in other environments, such as membrane-

embedded proteins, is also of significant interest. Mem-

brane proteins are critical for transport of material across

cell boundaries and for transmitting signals into and out

of cells. Furthermore, certain diseases and aggregation

phenomena are associated with peptide interactions in

membranes and are of general medical importance.7

Probing membrane protein interactions
using rigid docking

One useful computational tool for deducing the struc-

ture of membrane protein complexes is rigid docking.

Rigid docking can exhaustively sample the set of all pos-

sible rigid conformations of the complex on a lattice.

This sampling is more comprehensive than the sampling

obtained from equilibrium MD simulations. Further,

docking, if established to be accurate, can be an efficient

means of sampling higher order conformations of the

peptide (oligomers), providing atomic detail regarding

the structure of aggregates, as a quicker computational

alternative to MD simulations.8 Finally, the potentials

used in a docking algorithm are based on contacts

observed in protein interfaces and incorporate a informa-

tion that differs in essential ways from information used

to parameterize force fields employed in MD simulation.

Docking algorithms like Cluspro, Haddock, and

ZDOCK have been used previously to study the structure

of membrane proteins.9–13 Indeed, in a recent study14 a

comparison was made between different algorithms for

predicting membrane protein complexes. The algorithms

were designed primarily for aqueous solutions. However,

with only small adjustments they were used to predict

the structures of membrane protein complexes. While

the benchmarks are clearly useful, and point to successful

prediction protocols, there remain a number of open and

intriguing problems. (1) What explains the success of

these algorithms when applied to structure prediction in

such different environments? (2) Are protein–protein

interfaces similar in membrane and aqueous solution,

making the prediction less dependent on the environ-

ment? (3) What is the role of the membrane and

membrane-water interface in determining the structure

of protein complexes?

Incorporating membrane–protein interaction
in DOCK/PIERR

Clearly, the environment in which the protein is

embedded must have an impact on its structure and

function. Earlier, simple one-body terms were proposed

to describe the transfer energies of different molecules

from aqueous solutions to membrane.15 Can we add

such a term to docking algorithms while retaining the

rest of the scoring functions in the form found to be

most successful for proteins in aqueous solution? With a

simple correction at hand, one computational model can

be used to predict the structures of protein complexes in

both aqueous and membrane environments. Such an

adjustment is also likely to provide better understanding

of interactions that are sensitive to environment and

those that are not.

In Ref. 13, the authors use the membrane orientation

of models from ZDOCK as a filter for docking mem-

brane complexes. In this study, in addition to orienting

docking models in the membrane, we add a new term to

the docking scoring functions, representing the mem-

brane transfer energy. Further, in the adjustment of the

docking algorithm to membranes we use our own dock-

ing method, DOCK/PIERR, which gives us easy access to

the code and deeper understanding of benefits and limi-

tations of the algorithm. The new membrane–protein

interaction energy is a simple one-body term for the

environmental changes the protein residues feel upon

transfer from aqueous solution to membrane. The energy

was designed by Tieleman et al.,15 based on results from

atomically detailed simulations. We add this term to the

docking potentials developed in our group PISA16 and

PIE17,18 and assess its use in predicting the structures

of membrane protein complexes. A straightforward

benchmark on a set of membrane proteins suggests that

the adjustment significantly enhances the prediction

accuracy.

Application to transmembrane protein
homodimer structure prediction

We apply this docking technology to the problem of

the prediction of coiled-coil dimer structures of trans-

membrane (TM) helical proteins, a problem that is of

broad biophysical importance. The formation of homo-

and hetero-dimers of TM helical proteins is known to be

critical to the processing of membrane proteins as well as

cellular signaling. Of particular interest is the transmem-

brane (TM) fragment of APP-C99 (C99), the 99 amino

acid C-terminal fragment of the Amyloid Precursor Pro-

tein (APP).

C99 is processively cleaved by g-secretase to produce

the amyloid b (Ab) peptide associated with Alzheimer’s

disease (AD).19–21 Cleavage of C99 results in Ab in a

number of isoforms, ranging from 38 to 43 amino acids

in length. The dominant isoform is Ab40, while the more

amyloidogenic Ab42 is formed in a 10:1 Ab40: Ab42

ratio.22,23 It is known that a variety of factors, including

familial mutations of C99,24,25 stability of the TM

helix,26 extent of homodimerization,27–29 membrane

lipid composition,30 and cholesterol levels,31 can
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influence the Ab product distribution and impact the

onset of AD. As such, knowledge of the details of the

cleavage process is critical to research on AD.32,33

An essential aspect of that problem is the prediction

of the structure of C99 monomer and homodimer in

bilayer environments.34,35 In this work, we have focused

on the study of the fragment C9923–55, which contains

the single TM region of C99 and is known to form

homodimers in lipid bilayers and micelles. Early pro-

posals for the structure of homodimers formed by asso-

ciation of the TM region of C99 consisted of right-

handed coiled-coils stabilized by interpeptide interactions

facilitated by the GxxxG motif21,25,26,36–39 that pro-

vides a good surface for helix packing.40 In contrast, a

recently reported NMR structure of C9915 2 55 (18

amino acids) is a left-handed coiled-coil structure stabi-

lized by a heptad-repeat motif involving G38 and A42.41

The most recent NMR structure42 of C9923 2 55 homo-

dimer reports a right-handed coiled-coil stabilized by

interpeptide contacts in the C-terminal region, in agree-

ment with earlier experimental findings and computa-

tional predictions. Given these differing proposals,

additional studies, both experimental and computational,

are clearly required to develop a complete and consistent

understanding of the C99 homodimer structure.

In this study, we illustrate that rigid docking and re-

ranking of sampled configurations of amyloid precursor

peptides are consistent with atomically detailed simula-

tions with implicit solvation. This finding concurs

with,43 where the authors perform rigid docking and

implicit solvent simulation for dimers of Glycophorin-A

and its mutants. Docking is shown to reproduce all the

key conformations in the MD ensembles. Differences

between structures of dimers obtained by different com-

putational methods are discussed. Finally, structural dif-

ferences between dimers characterized in micelle and

bilayer environments are considered.

METHODS

In this section, we first describe DOCK/PIERR, our

rigid docking algorithm, and the membrane score added

to DOCK/PIERR to mimic the membrane environment.

Second, we consider the dataset of unbound membrane

protein complexes, used for establishing performance of

various docking algorithms, along with a brief note

about the docking algorithms whose performances were

compared. Finally, we explain the simulation methods

used for obtaining the 23–55 dimers of the amyloid pre-

cursor protein (APP) and the approach used to dock the

APP monomers obtained from simulation.

DOCK/PIERR rigid docking algorithm

DOCK/PIERR16,17,44 is an algorithm that predicts, in

atomic resolution, the structure of the complex formed

by two proteins, given their individual tertiary structures.

The first phase involves rigid docking and coarse scoring.

First, an exhaustive set of rigid transformations of one

protein with respect to the other is sampled and scored,

using Fast Fourier Transforms (FFT) on a grid with �1

Å spacing. The scoring used is a combination of a van

der Waals term for shape complementarity and a residue

potential PIE17,18 that is based on interface residue-

residue contacts. The parameter set for the scoring func-

tion was optimized using a rigorous theory and extensive

learning set (640 protein complexes).18 For prediction

purposes, the top scoring 219 5 524388 conformations

are stored, and subject to subsequent filtering for inter-

face clashes and clustering. Specifically, the set of confor-

mations is clustered in rigid body space, followed by

filtering out of models with >45 atomic clashes. The

remaining models are re-clustered based on interface

RMSD. Clustering removes models that are too similar

to other models and allows for more diverse ranking.

The second phase of the calculation emphasizes re-

ranking with atomic models.16 Only the top scoring one

thousand models selected by clustering as discussed

above are considered. For each model, the side chains at

the interface are remodeled, and a brief energy minimi-

zation is performed. The minimized structures are then

rescored using an atomic potential designed for protein

contact interfaces, PISA, combined with the residue

potential, PIE. Note that the second phase is not meant

as a refinement step. The adjustments to the structure

are exceptionally small (RMSD � 0.1 Å) and are made

to improve the atomic score, not the overall docking

pose. Finally, the algorithm returns the top ten models of

the complex as predictions.

In recent community-wide assessments of docking

algorithms45 (CAPRI), the DOCK/PIERR algorithm was

judged to be one of the top four current automated pro-

tein–protein docking methods. The novelty of this dock-

ing algorithm lies in the potentials PIE and PISA used

for scoring residue and atomic contacts at protein inter-

faces. The parameters of these potentials are derived by

examining hundreds of thousands of correctly and incor-

rectly docked poses, using large-scale machine learning

methods like structural SVMs.17,46

Membrane potential for reranking docking
decoys

The docking algorithm described above only examines

the interface contacts of the models and does not incor-

porate information about the environment surrounding

the complex. The potentials, PISA and PIE, used for

scoring interface contacts are derived empirically from

datasets of experimental and decoy structures of primar-

ily solvated protein complexes (the training set includes

only 7 membrane proteins of a total of 640 and their

contribution to the statistics is small).
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We anticipate that learning on membrane proteins will

result in different potentials. Nevertheless, it is tempting

to keep the designed potentials “as are” and look for an

additional term to score the effects of the membrane.

This will make the docking method more modular,

transferable, and general. In this study, adding such an

energy term, that includes residue-specific information

about membrane solvation, is shown to enhance predic-

tion accuracy in membrane complexes. This term was

added to the last reranking step of docking and not to

the coarse FFT step. The complexity of the FFT code sug-

gests restricting the use of the additional term, at least to

begin with, to the final step of reranking,

Calculating membrane energy

Rather than design a membrane environment potential

from scratch, we adopted a function that was developed

by other investigators. Previous results from MD simula-

tions by Tieleman et al. consider transfer free energy

from aqueous solution to the center-of-membrane for

each amino acid residue.15 Their detailed and compre-

hensive simulations provided us with singe body adjust-

ments that measure the costs (and rewards) of

transferring each amino acid between the two environ-

ments. The underlying physical assumption is that the

one body term captures the environment effect and that

the impact of the membrane on the two body interac-

tions is significantly smaller and can be neglected. The

drawback of our choice is that the atomically detailed

simulations and our machine learning procedure are not

necessarily compatible and some double counting of the

same effect may occur. On the other hand the combina-

tion of our potential with Tieleman’s energy includes

only one free parameter, making it relatively simple to

verify the impact and the significance of the combina-

tion. We observe a large enhancement in prediction

capacity, which suggests that the environment potential

indeed captures a useful signal.

The membrane energy was calculated from these trans-

fer energies using the following steps. First, each docking

model was inserted into the membrane, by placing its

center of mass at the center of the membrane, and by

orienting the eigenvector corresponding to the smallest

Eigenvalue of the tensor of inertia of the model along

the membrane normal. This orientation is appropriate

for elongated transmembrane proteins such as helical

proteins, which are our prime targets in this study. For

wide proteins a different orientation procedure will have

to be used, since the eigenvector with the smallest Eigen-

value is not necessarily in the direction normal to the

membrane. Second, for each docking model, the relative

solvent accessibility of every residue was calculated using

the program DSSP.47 Finally, the membrane energy was

calculated as follows: each residue whose side-chain

center of mass was within a specified membrane width

contributed to the membrane energy. The contribution

from such a residue, i, was equal to the membrane trans-

fer energy for that residue, ti, weighted by its relative sol-

vent (lipid) accessibility, ai. As shown in Eq. (1), the

membrane transfer energy, or MTE, for a model, is the

sum of the transfer energy contributions from all resi-

dues i, within the membrane width.

MTE5
X

i

aiti (1)

We note that Tieleman et al. also provided water-to-

hydrophilic membrane interface transfer energies, apart

from water-to-center of membrane transfer energies. The

addition of these extra parameters did not contribute to

improved accuracy in ranking and hence they are not

included in our docking algorithm for membrane

complexes.

Membrane widths

The membrane half-width along the Z-axis is, of

course, important for our calculations since it determines

the degree of exposure of different amino acid side

chains to the membrane environment or to aqueous

solution. However, membrane widths are not strictly

fixed and can vary among different membrane pro-

teins.48 For experimentally determined structures the

width is known; however, for model complexes and vari-

able composition of lipids it is not. Servers like

TMDET48 and databases like the PDBTM database49

store precalculated widths for membrane proteins whose

experimental structure has been determined. But these

are difficult to use when ranking hundreds of thousands

of models, with different effective membrane widths, and

when studying complexes for which the experimental

Figure 1
Example of a model oriented in the membrane, and a particular resi-
due, i, inside the membrane that contributes aiti to the membrane

energy, where ai is the residue relative solvent exposed surface area and
ti is the residue membrane transfer energy. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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data is limited. To pick a width that is consistent and

optimal within our model, we use the following proce-

dure: for each docking model, membrane transfer ener-

gies were calculated for a range of half-widths: 16 Å 6 3

Å, in steps of 0.5 Å that is, for 13.0, 13.5, 14.0,

14.5. . .16.0, 16.5, 17. . .19 Å, respectively. For each width,

only protein residues whose centers of mass are within

the membrane boundaries are scored according to Eq.

(1) and contribute to the membrane energy for that

width. The lowest (best) membrane transfer energy over

the range of widths was taken as the score for the dock-

ing model. Figure 1 shows an example of a model ori-

ented in the membrane, and a particular residue, i,

inside the membrane that contributes to the membrane

energy.

Bilayer versus micelle membrane
environments

For docking membrane proteins characterized in a

micelle environment, instead of the regular linear

membrane model, a spherical membrane model with

radius of 16 Å 6 3 Å is used to calculate the membrane

energy. The code for membrane energy was implemented

using the Biopython module.

Combining membrane energy with docking
scores

DOCK/PIERR uses C3, a combination of atomic and

residue potentials, to rerank the top one thousand mini-

mized docking models.16 The membrane energy (MTE)

was combined with C3 in a parameter-free fashion by

using the product of C3 with MTE. Such a product of

docking scores/energies has been previously shown to

work well to improve the accuracy of the reranking

step.16 The product energy in this study was formulated

as k � C3 � MTE where k51:6 if both C3 and MTE have

positive values and k 5 21.0 otherwise. This ensures that

the product energy is negative when both energies are

negative (favorable) and positive otherwise. We hence-

forth refer to the product energy as C3*MTE. The code

Table I
Targets and Individual Components That Formed the Dataset of 30 Transmembrane Proteins

Receptor chain Ligand chain

Target
Original

PDB
Chain: start

residue
Chain: end

residue
Chain: start

residue
Chain: end

residue
Receptor

homolog chain
Ligand

homolog chain

1A91 1A91 A:1 A:42 A:43 A:79 MD MD
1BL8 1BL8 A:23 A:119 B:23 B:119 1K4D_C 1K4D_C
1C17 1C17 A:1 A:79 B:1 B:79 MD MD
1C3W0 1C3W A:75 A:231 A:5 A:74 2I1X_A 1Q5J_A
1C3W1 1C3W A:102 A:231 A:5 A:101 2I1X_A 1CWQ_A
1C3W2 1C3W A:5 A:129 A:130 A:231 1Q5I_A 3VHZ_A
1EHK 1EHK B:3 B:168 C:2 C:34 3S33_B 1EHK_C
1H2S 1H2S A:1 A:225 B:23 B:82 1GU8_A 2F95_B
1H680 1H68 A:94 A:219 A:2 A:93 4GYC_A 2F93_A
1H681 1H68 A:2 A:119 A:120 A:219 2F93_A 2F93_A
1H682 1H68 A:2 A:150 A:151 A:219 2F93_A 2F93_A
1JVM 1JVM B:24 B:123 C:24 C:120 1K4D_C 1K4D_C
1LGH 1LGH A:1 A:56 D:1 D:56 MD MD
1M0K0 1M0K A:73 A:231 A:5 A:72 1C3W_A 1MOK_A
1M0K1 1M0K A:106 A:231 A:5 A:105 1C3W_A 1Q5I_A
1M0K2 1M0K A:5 A:128 A:129 A:231 1CWQ_A 1C3W_A
1M56 1M56 C:2 C:266 D:10 D:51 1QLE_C 1M56_D
2BHW 2BHW A:10 A:232 B:10 B:232 MD MD
2BRD0 2BRD A:66 A:228 A:7 A:65 1PXR_A 2BRD_A
2BRD1 2BRD A:103 A:228 A:7 A:102 3VHZ_A 1Q5I_A
2BRD2 2BRD A:7 A:129 A:130 A:228 1CWQ_A 3VHZ_A
2IRV 2IRV B:93 B:271 A:92 A:273 2O7L_A 2IC8_A
2KSE 2KSE A:1 A:40 A:150 A:186 MD MD
2NRF 2NRF A:91 A:272 B:91 B:272 2IC8_A 2IC8_A
2VT4 2VT4 A:40 A:358 B:39 B:359 2Y00_A 2Y00_A
2WIE 2WIE A:2 A:82 B:2 B:82 3V3C_A 3V3C_A
3B45 3B45 A:169 A:270 A:91 A:168 3B44_A 2IC8_A
3B4R 3B4R A:3 A:220 B:3 B:218 MD MD
3DWW 3DWW A:11 A:152 C:11 C:152 MD MD
3KCU 3KCU A:29 A:280 B:29 B:280 3Q7K_A 3Q7K_A

Also listed are the homologous chains for those proteins whose unbound structures were obtained by homology modeling. Chains denoted by “MD” are those for

which homologs were not found or for which the homology modeled structures were not sufficiently close (TM-score was lower than 0.85) to the bound structure.

Molecular Dynamics was used to obtain the unbound structures for these cases. Further, for four of the complexes (1EHK, 1M0K0, 1M56, and 2BRD0) the ligand chain

was retained in bound form and bound-unbound docking was performed. Details are provided in the following subsection.
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for MTE was implemented using Biopython.50 C3

energy as well as MTE are available online at http://clsb.

ices.utexas.edu/web/dock_details.html.

Other docking algorithms

The performance of DOCK/PIERR was compared to

Cluspro,51 GRAMM-X4, and ZDOCK1ZRANK.3,52 We

have compared our algorithm to these approaches in the

past for the case of protein complexes in aqueous solu-

tion and it therefore makes sense to extend our compari-

son to membrane proteins. Previous comparative

docking studies have shown that these algorithms were

among the best performing algorithms for membrane

protein docking.14 Results were obtained from the serv-

ers in the cases of Cluspro and GRAMM-X. For

ZDOCK1ZRANK, the ZDOCK 3.0.2 package was down-

loaded and docking jobs were run locally. The top 2000

models from ZDOCK were rescored using the ZRANK

scoring function.

Creation of unbound membrane protein
complexes dataset

A data set of 30 transmembrane protein complexes

was extracted from MPStruc,53 a database of membrane

proteins from the White laboratory. Representative struc-

tures were chosen from each of the classes to ensure

functional and structural diversity. The membrane span

of the selected proteins was checked using the PDBTM

database,49 a database of transmembrane proteins in the

PDB. Proteins selected from the MPStruc database, that

had no entry in the PDBTM database, were discarded.

Proteins classified as membrane proteins often do not

span the entire length of the membrane and can interact

with just one small region of it, for example, peripheral

membrane proteins or cell-surface proteins. The PDBTM

database was therefore used to determine the extent to

which each protein was embedded in the membrane.

Integral membrane proteins, where the majority of the

structure to be docked lay in the transmembrane region,

were specifically chosen.

We obtained 18 complexes for docking two separate

protein chains. To increase the number of experimental

complexes in this study, we also considered single-chain

multi-pass trans-membrane proteins (e.g., GPCRs) that

we broke into two complementary fragments, at an

extramembranous loop region, and reassembled. In this

way we obtained 12 more complexes. For each chosen

GPCR, multiple independent splits were made, and each

split produced two chains to be docked. Each independ-

ent split was taken as a separate target for unbound

docking. Table I shows that we obtained 12 targets from

the GPCRs 1C3W, 1H68, 1M0K, and 2BRD, 3 per

GPCR, in this manner. Finally, we also discarded trans-

membrane chains where the binding between the chains

was intricate, that is, one of the chains twisted around

the other. This is because these cases are not suitable for

rigid docking as one protein undergoes a large confor-

mational change to bind with the other. For each protein

complex chosen, Table I shows how we obtained the

individual components to dock. The PDB IDs in the col-

umn “Original PDB” show the PDB entries that the tar-

gets are derived from.

Modeling unbound chains by homology and
creating distorted structures by molecular
dynamics

First, for each receptor (one of the proteins in the

complex) and ligand (the complementary protein in the

complex) sequence in the set of 30 transmembrane com-

plexes, a search for homologs in the PDB was performed

using PSI-BLAST.54 For complexes for which homologs

(E-value lower than 0.001) were found for receptor and/

or ligand chains, Modeller55,56 was used to create a

structure of the unbound receptor and ligand using the

homolog as template. The TM score57 of the bound to

unbound structure was measured for each homology-

modeled receptor and ligand chains. Unbound (modeled)

conformations that were too different (i.e., TM score

lower than 0.85) from the bound (PDB) conformation

were discarded.

In all, we successfully produced homologous unbound

conformations for both chains in 19 of 30 complexes.

Apart from these 19, 4 complexes (1EHK, 1M0K0,

1M56, 2BRD0) had one unbound chain (receptor or

ligand) with TM score lower than 0.85 to the bound

structure, and the other chain with a TM score higher

than 0.85 to the bound structure. For these four com-

plexes, the unbound structures with TM scores lower

than 0.85 were replaced with the bound (PDB) confor-

mation and bound–unbound docking was performed.

Four other complexes (1A91, 1C17, 2BHW, 3DWW) had

both receptor and ligand unbound conformations quite

different (TM score lower than 0.85) from the bound

conformations. And for three complexes (2KSE, 1LGH,

3B4R), homologs were not found in the first step of PSI-

BLAST. Hence the latter seven complexes were treated

separately and molecular dynamics was used to obtain

the unbound conformations in these seven cases as

described below.

For the receptor or ligand proteins for which homol-

ogy modeling was unsuccessful, unbound conformations

were obtained from short Molecular Dynamics MD runs

on the original PDB receptor and ligand structures. The

receptor and ligand were separately minimized in vac-

uum for 100 steps using mini_pwl, an energy minimiza-

tion routine in the MD package MOIL,58 in order to

remove high-energy contacts and clashes in the structures

before the dynamics run. The minimized structures

(receptor and ligand separately) were subject to a very
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short simulation of 0.1 ps at 300 K (1000 steps with a

time step of 0.0001 ps). The conformations obtained

after the dynamics run were used as the unbound struc-

tures. These perturbed conformations had an average all-

atom RMSD of 0.717 Å to the original PDB structures,

and a range of RMSDs between 0.618 and 0.859 Å. These

RMSD values are smaller than typical homology models.

However, MD under the above conditions tends to sig-

nificantly distort the protein structures. Therefore, we

did not push the simulations to longer times.

Simulation methodology for studies on APP
dimers

For explicit solvent simulation, we employed all-atom

models of POPC bilayer and DPC micelle environments.

Initial structures for the all-atom models were taken

from the results of CG simulations performed using the

MARTINI force field.50,59,60 Initially, two C9923 2 55

peptides were placed 25 Å apart in a POPC bilayer. CG

molecular dynamics simulation was performed for 1.5 ms

for 60 independent systems using GROMACS.61 In all

cases, the CG peptides were observed to associate and

form homodimers. This resulted in a diverse set of

homodimer structures, each of which could be character-

ized as being in the Gly-in, Gly-out, or Gly-side confor-

mational state. The CG structures were subsequently

transformed to all-atom models using Pulchra62 and

embedded in the equivalent all-atom membrane using

CHARMM-GUI.63–66 The structures were minimized

and pre-equilibrated at 310 K and 1 atm while restrain-

ing the protein backbone, followed by a 100 ns of molec-

ular dynamics in the absence of restraints under a NPT

semi-isotropic ensemble using CHARMM36 all-atom

lipid force field (with CMAP) at 310 K and TIP3P water

model.67–69

All-atom simulations in the DPC micelle or POPC

bilayer consisted of 100 ns of MD performed on each

all-atom system (following minimization and a short

NVT and NPT equilibration with the protein backbone

fixed). The non-bonded interactions were truncated

using shift functions (between 0.9 and 1.2 nm for Len-

nard–Jones interactions and between 0 and 1.2 nm for

electrostatics). Long-range electrostatic interactions were

calculated using the Particle Mesh Ewald (PME)

method70 with a Fourier grid spacing of 0.12 nm. The

pressure was set to 1 bar using a semi-isotropic coupling

scheme with lateral and perpendicular pressures treated

separately with coupling time 0.1 ps using the Parri-

nello–Rahman barostat methodology. The temperature of

the system was set to 303 K and regulated using the

Nos�e–Hoover weak coupling algorithm.71 The linear

constraint solver (Lincs) method72 was used to constrain

all bond lengths, with a 2 fs integration step. All-atom

simulations in DPC micelle were carried out under the

same conditions using an isotropic coupling scheme to

control the pressure. The simulations were carried out

using GROMACS (v4.5.1).61

For the implicit solvent simulations, the replica-

exchange molecular dynamics (REMD) method was used

to improve sampling of the structural ensemble. Simula-

tions were carried out using the MMTSB package73 and

CHARMM.74 The system used an all-atom representation

of the protein, and implicit representations of the lipid

and water environments, which were represented by

regions of varying dielectrics, with the membrane being

defined as a continuous slab with a low dielectric value,

in the XY-plane. The initial structures used were two

C9923 2 55 peptides modeled as straight helices, independ-

ently and randomly oriented in the implicit membrane.

During the course of the simulation, the peptides were

observed to form homodimers in the Gly-in, Gly-out, or

Gly-side conformational state. The PARAM22 force field

with the CMAP correction75 was used, including correc-

tions specific for the GBSW model76 with updated radii.

The smoothing length used at dielectric boundaries was

0.6 Å, with 24 radial integration points, and no cutoff.

The surface tension coefficient was set to 0.04 kcal (mol

Å22)21. The membrane width was 40 Å with a 5 Å “head

group” switching region at each end, leaving a 30 Å width

as the membrane interior. The switching function for the

head group region varied from the interior dielectric con-

stant value of 1 to the solvent region dielectric of 80.

Approach for docking APP structures
from simulation

A set of 50 dimers of the 23–55 segment monomer of

APP-C99 corresponding to the lowest energy (based on

the MD molecular mechanics energy) simulation struc-

tures obtained from implicit solvent MD simulations

were used for docking.

Both bound and unbound docking was performed on

each set of simulation structures. In bound docking, the

monomers that is, individual helices of each simulated

dimer were separated and docked. Ten top scoring mod-

els from docking were predicted for each simulation

complex. For unbound docking, two simulation dimers

were chosen at random (say A and B), and one helix

from dimer A (say A’s receptor) was docked to the other

helix in dimer B (B’s ligand). The docking predictions

for this pair were compared to the dimer A. About 50

nonrepeating A–B receptor–ligand pairs were docked.

Because the monomer conformations themselves can be

quite different (>1 Å RMSD) from each other in simula-

tions, the selection of complex B each time was con-

strained to those complexes where B’s ligand was within

1 Å RMSD from the ligand in complex A.

Additionally, as a final post-processing step for dock-

ing APP structures and comparing the rigid docking pro-

cedure to simulations of peptide dimerization in

membrane, anti-parallel dimer poses were filtered out
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from the final set of docking models, by making use of

the additional information that the dimers found in the

MD simulation are never anti-parallel. The last observa-

tion may reflect a kinetic barrier and not necessarily

thermodynamic preference. However, for comparison

purposes, the above filtering was found useful.

While evaluating docking methods on the APP dimers,

a cutoff of 1.5 Å interface RMSD was used as the defini-

tion of “hit” or near-native structure (as the monomer

helices are short and only 33 residues long). This is in

contrast to the usual cutoff, which is 4 Å for an accepta-

ble model and 2.5 Å for a high-quality model in protein-

protein docking assessments such as CAPRI.45,77 Typical

RMSD increases with system size and hence a smaller

value for the peptide system.

RESULTS AND DISCUSSION

In this section, we first discuss results for the predic-

tion of membrane protein complexes. Second, we discuss

the results from docking of APP dimers derived from

implicit solvent simulations. Third, we discuss differences

between structures obtained from alternative computa-

tional methods. Fourth, we touch upon differences in

structures obtained from micelle and bilayer membrane

environments.

Structure prediction of membrane protein
interactions

Membrane protein interfaces can be predicted by
solvated protein docking algorithms

Interfaces of membrane and water-soluble protein

complexes are quite similar14 and can be predicted with

reasonable accuracy by current state-of-the-art protein-

protein docking algorithms. This implies that protein-

docking algorithms can be used as an additional and reli-

able source of information for structural studies of mem-

brane proteins. We note that protein docking algorithms

use potentials that have been trained on datasets that are

primarily composed of soluble proteins; for example,

Cluspro and Gramm-X use the training set in Ref. 78

which consists of 621 protein complexes out of which

only 6 are membrane proteins, DOCK/PIERR is trained

on a dataset of 640 complexes with a similar percentage

of membrane proteins, and ZDOCK’s interface contact

potentials are trained on a dataset79 of 89 complexes

with one membrane protein.

In spite of being trained on interfaces of soluble pro-

teins, these docking algorithms succeed in predicting a

near-native structure in the top ten models with reasona-

ble accuracy on membrane proteins. Table II shows the

performance of four different docking algorithms on the

dataset of 30 unbound transmembrane protein complexes.

The measure of performance that we use here is the inter-

face RMSD. Interface RMSD80,81 is a widely used mea-

sure of accuracy for docking predictions, and is the

RMSD measured along the interface residues of the exper-

imental complex. The first number in column 2 of Table

II shows the number of hits (near-native structures i.e.,

docking models that are within 4 Å interface RMSD from

the experimental structure) in the top ten models cumula-

tive across all 30 complexes (targets). The second number

in column 2 of Table II shows the number of complexes

for which at least one such hit was found in the top ten

Table II
Docking Performance of DOCK/PIERR With C3 and C3*MTE Poten-
tials, Gramm-X, Cluspro, and ZDOCK1ZRANK on the Dataset of 30

Unbound Membrane Protein Complexes

Docking algorithm

Top 10 number of
hits within 4 �

iRMSD/number of
complexes with
at least one hit

DOCK/PIERR rerank with C3 2/2
DOCK/PIERR rerank with C3*MTE 14/11
ZDOCK1ZRANK 10/9
Cluspro 17/14
Gramm-X 20/17

Table III
The Numbers of Models With Interface RMSD <4.0 Å in the Top 10

Predictions of DOCK/PIERR With C3*MTE Potential, Gramm-X,

Cluspro, and ZDOCK1ZRANK

Target
DOCK/PIERR with
membrane score

ZDOCK1

ZRANK CLUSPRO GRAMM-X

1A91 1 1 2 1
1BL8 0 0 0 0
1C17 0 0 1 1
1C3W0 1 0 1 1
1C3W1 1 0 1 1
1C3W2 0 1 1 1
1EHK 0 0 0 0
1H2S 3 0 0 0
1H680 0 0 1 1
1H681 0 0 0 0
1H682 0 0 2 2
1JVM 0 1 0 0
1LGH 0 0 0 0
1M0K0 1 0 1 1
1M0K1 1 1 1 1
1M0K2 0 1 1 2
1M56 0 0 0 0
2BHW 0 0 0 0
2BRD0 1 0 0 1
2BRD1 0 0 1 1
2BRD2 2 0 2 1
2IRV 1 1 0 0
2KSE 0 1 0 2
2NRF 0 0 0 0
2VT4 0 0 0 0
2WIE 1 2 1 1
3B45 1 0 1 1
3B4R 0 0 0 1
3DWW 0 1 0 0
3KCU 0 0 0 0
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models. Depending on the algorithm, accuracy varies

between 30 and 56.6% for unbound docking. Gramm-X

performs the best in this study and is able to obtain a

near-native structure in the top ten about 56.67% of the

time in unbound docking. This is in agreement with an

earlier study14 that showed Gramm-X to have the best

performance in docking membrane proteins.

Table III shows the performance of docking algorithms

in terms of number of top 10 hits, split by target.

DOCK/PIERR with the membrane score is able to dock

complex 1H2S, which the other docking algorithms are

not able to solve. Similarly, ZDOCK1ZRANK is able to

solve uniquely 1JVM and 3DWW. Gramm-X is the only

docking algorithm able to solve 3B4R.

Membrane energy contributes to improved recognition

As shown in Table II, the inclusion of the membrane

energy significantly improves the recognition of the com-

bination of atomic and residue potentials, C3. DOCK/

PIERR is able to obtain a near-native structure in the

top ten in 36.7% of complexes. We note that other dock-

ing programs can potentially benefit in accuracy from

reranking using the additional membrane potential as

well. Care must be used, however, when examining dif-

ferent algorithms and scoring functions to avoid double

counting of similar energy terms.

Docking and implicit solvent MD simulations agree
on structures of APP dimers

In this section, we explore the structure of the dimer

formed by the 23–55 segment of the APP-C99 protein

using docking and implicit solvent MD simulations.

Table IV shows the performance of DOCK/PIERR for

bound and unbound docking of 50 implicit solvent

dimers from simulation. The docking performance was

evaluated based on the number of models matching the

corresponding MD structure within 1.5 Å interface

RMSD. The first number in column 2 of Table IV reports

the number of models in the top ten that matched the

corresponding MD complex, across all 50 complexes.

The second number in column 2 of Table IV is the num-

ber of complexes out of 50, for which at least one model

in the top ten matched the corresponding simulation

structure. Docking and MD simulation show a good

agreement with 42 out of 50 dimers from bound docking

matching the corresponding MD structure, and 26 out of

50 dimers from unbound docking matching the MD

structure. The accuracy of unbound docking is lower

than that of bound docking, which is to be expected, as

the interfaces of monomers from unbound docking do

not match precisely.

Figure 2 shows the probability distribution of interface

RMSDs for the top 10 docking models from bound and

unbound docking of the 50 simulation dimers. In other

words, this is a distribution across a set of 500 bound and

500 unbound docking models. Note that since we filter

out anti-parallel orientations, the interface RMSD distri-

bution stops at 10 Å (x axis). There is a prominent tail

near 1 Å, especially for bound docking indicating a signif-

icant number of near-native structures in the set of top 10

models. Another measure of confidence in docking pre-

dictions is the z scores, which is defined for a model, m,

as Em2l
r , where Em is the energy of the model, and l and

rc represent the average energy and standard deviation

of the energy distribution respectively. The average z

scores of the C3*MTE energy across the 5 best docking

models (best in terms of interface RMSD) was

24.2646 among the 500 bound docking models and

23.5062 among the 500 unbound docking models.

More negative z-scores indicate that the potential can

distinguish near-native structures more accurately.

Further, APP dimers can be described by an order

parameter based on the distance between the Gly29 in

the two helices. If the distance is within 5 Å, the dimer

is said to be in Gly-in conformation, if the distance is

between 5 and 10 Å, the dimer is in Gly-side conforma-

tion, and if the distance is above 10 Å, the dimer is in

Gly-out conformation. Gly-in structures are stabilized by

Table IV
Bound and Unbound Docking Results for 50 Simulation Structures of

the 23–55 segment of APP-C99 From Implicit Solvent

Docking type

Top 10 number of hits within
1.5 � iRMSD to MD
structure/number of

complexes with at least
one hit matching MD structure

Bound 43/42
Unbound 26/26

The first number in the second column is the number of hits recovered from

docking across all 50 complexes: a hit is a model from docking that is within 1.5

Å interface RMSD to the corresponding simulation structure. The second number

is the number of complexes for which at least one hit was found in the top ten

models.

Figure 2
Probability density of the interface RMSD of top 10 docking models for

50 bound and unbound simulation dimers of APP-C99. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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interhelical contacts facilitated by the “flat face” created

by the GxxxG sequence motifs. Gly-out structures are

stabilized by a tetrad repeat motif that facilitates interhel-

ical “knob-in-hole” interactions.

Based on this characterization, out of the 50 lowest

energy dimers derived from implicit solvent simulation,

40 were of Gly-side type and 10 were of Gly-in type.

There were no Gly-out structures in the 300 K MD

ensemble. Table V shows the performance of bound

docking in recovering the order parameters measured in

the MD simulations. The agreement between docking

and simulation dimers is high (9/10) for Gly-in type

structures and good (33/40) for Gly-side structures.

Figure 3 provides a comparison of the distribution of

C9923–55 homodimer structures derived from all-atom

simulation, in explicit POPC membrane or DPC micelle

and in GBSW implicit membrane, with the DOCK/PIERR

structures predicted by bound docking. The structures are

projected on a plane defined by two order parameters.

The ensembles of C9923–55 homodimer in POPC bilayer

and DPC micelle are shown in Figure 3 in terms of the order

parameters /4G and dGG. /4G is a dihedral angle formed by

G29A-G37A-G37B-G29B, where A and B label the two

C9923–55 monomers. dGG is the interhelical distance

between G33A-G33B. The /4G order parameter is positive

for left-handed structures and negative for right-handed

structures. The value of the dGG parameter determines

whether a structure is Gly-in, Gly-out or Gly-side, with Gl-

in (dGG < 5 Å), Gly-side (dGG < 5 and 10 Å), and Gly-out

(dGG > 10 Å). Structures stabilized by interpeptide interac-

tions facilitated by the GxxxG repeat region are Gly-in struc-

tures characterized by small values of the dGG parameter.

On the basis of the comparison of simulated ensem-

bles and docking predictions, we can draw a number of

conclusions. (1) The DOCK/PIERR predictions capture

the three characteristic homodimer structural motifs,

Gly-in, Gly-side, and Gly-out. (2) The predictions of

DOCK/PIERR capture a number of essential trends in

the environmental modulation of the C9923–55

homodimer ensemble in bilayers and micelles, which is

discussed below detail.3 In addition, the DOCK/PIERR

predictions suggest that left-handed structures are pre-

dominantly of the Gly-out topology as observed in all-

atom simulations36 and experiment.41,42

Figure 4 shows accurate docking predictions among

the top ten models, superposed with the simulation

structure from which they were assembled. The Gly-side

model was within an interface RMSD of 0.5 Å from the

simulation structure, while the Gly-in model was within

0.6 Å from the simulation structure. The figure shows

that the backbones essentially overlap while the side-

chains show minor differences.

Structural differences between the results of alternative
computational methods to predict complexes of amyloid
peptides

As Table V shows, DOCK/PIERR docking is reasonably

accurate for Gly-in complexes generated by implicit sol-

vent simulations using parameters for the membrane

Table V
Bound Docking Results on 40 Gly-side and 10 Gly-in Simulation Struc-

tures From Implicit Solvent

Simulation dimer type
[Number of simulation dimers]

Top 10 Number of hits within 1.5 �
iRMSD to MD structure/number of

complexes with at least one
hit matching MD structure

Gly-side [40] 34/33
Gly-in [10] 9/9

The first number in the second column is the number of docking models within

1.5 Å interface RMSD from the corresponding simulation structure, across all com-

plexes of the given dimer type. The second number is the number of complexes

for which at least one hit was found in the top ten models for that dimer type.

Figure 3
Distribution of homodimer structures of C9923–55 in POPC bilayer, DPC micelle and Implicit Membrane derived from all-atom simulations (gray)

and compared with the DOCK/PIERR predictions (black) projected onto the order parameters dGG and /4G.
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width chosen to approximate a POPC bilayer. However,

when applied to dock 30 Gly-in complexes from explicit

solvent POPC bilayer, it was observed that DOCK/PIERR

fails to produce a single hit in the top ten models for

any of the 30 complexes. These differences in docking

results hint at structural differences in the dimers from

implicit and explicit solvation. The differences were

investigated using the docking energy PIE, the residue

contact potential used in DOCK/PIERR.

Figure 5 is a distribution of the PIE energy for the

implicit and explicit solvent simulation dimers that were

docked. It shows that the PIE energy is much lower for

the dimers derived from implicit solvent simulations.

This suggests that the number of inter-helical residue–

residue contacts is higher for the implicit solvent dimers,

leading to more favorable PIE energies for the latter. The

contact based potentials in DOCK/PIERR favor the

higher number of contacts in implicit solvent models.

For this reason, docking models show better agreement

with implicit solvent simulation derived dimers than

with dimers derived from explicit solvent simulations.

Differing compactness of the helical dimers provides

an explanation for the different numbers of contacts in

implicit and explicit solvent. This is seen in Figure 6,

which is a distribution of the smallest eigenvalue of the

tensor moment of inertia for each simulation structure.

The smallest eigenvalue corresponds to the long axis and

can be a measure of how close the helices are to each

other. The figure suggests that the implicit solvent simu-

lation derived dimer helices are closer than the explicit

solvent simulation derived dimers. In implicit solvent,

the hydrophobic residues in the dimers form more con-

tacts with each other, whereas in explicit solvent the

hydrophobic residues form more contacts with the mem-

brane. This leads to more compact dimers in implicit

solvent. In explicit solvation models, protein–protein

contacts can be more easily replaced by protein–water or

protein–membrane contacts, while in implicit solvation

model, the protein contacts are not explicitly replaced.

Figure 7 illustrates the 10 Gly-in implicit solvent models

and 30 Gly-in explicit solvent models that were docked.

Figure 4
Left: A docking model (green) in the top 10 predictions, at an interface
RMSD of 0.5 Å from the corresponding simulation structure (gray) of

Gly-side type. Right: A docking prediction (cyan) in the top 10, at an

interface RMSD of 0.6 Å from a Gly-in simulation structure (blue).
The carbon alpha atoms of the glycine residues in the GxxxG motifs in

the simulation structures are shown as red spheres.

Figure 5
Probability distribution of PIE energy for 10 Gly-in implicit solvent
simulation dimers and 30 Gly-in explicit solvent simulation dimers in

POPC membrane that were bound docked. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6
Distribution of the smallest Eigenvalue of the tensor moment of inertia
for 10 Gly-in implicit solvent simulation dimers and 30 Gly-in explicit

solvent simulation dimers in POPC membrane that were bound
docked. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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The implicit solvent models lead to helices closer to each

other at the C-terminal (right hand side) end, whereas in

explicit solvent models, the helices are farther separated.

Differences between structures from DPC micelle
and POPC bilayer

DOCK/PIERR is able to bound dock 17/30 simulation

dimers from POPC bilayer (i.e., a model within 1.5-Å

interface RMSD was found in the top ten models for 17

of 30 dimers) in Gly-out conformation. However, the

same experiment repeated on the Gly-out dimers in DPC

micelle results in no hits in the top ten for any of the 30

dimers derived from micelle simulations. Again the dif-

ferences between the two docking accuracies hint at

structural differences between dimers in the different

bilayer and micelle environments.

Figure 7
Top: 10 explicit solvent simulation dimers superimposed. Bottom: 10

implicit solvent simulation dimers superimposed. The dimers chosen
were the top scoring simulation dimers from the MD ensemble accord-

ing to C3*MTE. The carbon alpha atoms of the glycine residues in the

GXXXG motifs of the dimers are shown as blue spheres.

Figure 8
Probability distribution of PIE energy for 30 Gly-out explicit solvent
simulation dimers in POPC bilayer and 30 Gly-out explicit solvent sim-

ulation dimers in DPC micelle that were bound docked. [Color figure
can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 9
Distribution of the cosine of angle between helices for 30 Gly-out

explicit solvent simulation dimers in POPC bilayer and 30 Gly-out

explicit solvent simulation dimers in DPC micelle that were bound
docked. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 10
Left: Ten dimers derived from explicit solvent simulations in POPC
membrane. Right: Ten dimers derived from explicit solvent simulations

in DPC micelle. The ten dimers in each case were the top scoring
dimers from the MD ensemble, as scored by C3*MTE. The carbon

alpha atoms of the glycine residues in the GxxxG motifs of the dimers
are shown as salmon colored spheres.
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These differences were explored using PIE. Figure 8

shows distinct differences in the PIE energy for bilayer

and micelle simulation models. The PIE energy is signifi-

cantly more favorable for the bilayer models, due to a

higher number of inter-helical contacts in the dimers.

Figure 9 is a plot of the absolute value of the cosine of

the angle between the long axes of the helices in the

dimer. There are clear differences in the distributions of

angles between the helices due to the differing environ-

ments in the bilayer and micelle. Dimers in bilayers have

cosine values closer to 1, indicating that the helices are

more parallel. In contrast, helices in micelles have a

wider range of angles and favor non-parallel orientations,

which are more “X”-like.

This is also illustrated in Figure 10, which shows the

30 bilayer models with parallel helices and 30 micelle

models with “X”-shaped helical angles. It is likely that

helices in micelle environments tend to adopt an “X”-

shaped orientation due to the influence of membrane

curvature as well as an entropic effect. The “X”-shaped

orientation is consistent with a greater number of con-

figurations and larger structural fluctuations, leading to

great configurational entropy of the protein in the

micelle than is found in the parallel Gly-in configura-

tions that are predominate in the membrane environ-

ment. The entropic driving force and membrane

curvature may be used to explain the observed environ-

mental dependence of dimer structures. Moreover, the

observed differences point to the limited applicability of

micelle environments as accurate mimics for membrane

bilayers in membrane protein structure determination.

Entropic reasons for the differences between dimer
structures in micelle and bilayer

Here we investigate the role of entropy as a possible

reason for differences in the dimer structures observed

in bilayer and micelle environments. The total energy

C3*MTE is compared for a set of 200 simulation struc-

tures of Gly-out type in DPC micelle, and 200 simula-

tion structures of Gly-out type in POPC bilayer. The

top plot in Figure 11 shows that the micelle structures

have a higher energy than the bilayer structures, and

hence structures in the bilayer are preferred. However,

the situation is reversed when we include the effect of

entropy in a generalized energy. We modeled the

entropy using the form 2AlogðsinðxÞÞ, where A is a

constant and x is the small angle between helices in a

dimer. The larger the angle x, the higher is the entropic

contribution to energy since the helices have more rota-

tional freedom. Upon adding this entropic term to the

total energy, Etotal5C3 �MTE2AlogðsinðxÞÞ, and recal-

culating energy of all structures, we show in the bottom

Figure 11
200 DPC micelle and 200 POPC bilayer structures of the Gly-out type were selected from the simulation ensemble. For each DPC micelle structure,

the difference between its energy and the energy of each POPC bilayer structure was plotted as a function of the helical angle in the micelle struc-
ture. The top plot shows the distribution of energies without the entropy term and the bottom part shows the distribution of generalized energies

after addition of the entropy term.

S. Viswanath et al.

2182 PROTEINS



plot of Figure 11 that for values of the constant A which

are 610 or greater, the entropic factor makes the micelle

structures, which are predominantly “X”-shaped, more

favorable in generalized energy than the bilayer struc-

tures, which are parallel dimers. This analysis demon-

strates that variations in entropy could explain why the

“X” shaped dimers are favored in micelles compared to

the parallel helices that are predominant in bilayer

environments.

CONCLUSIONS

In this manuscript, we present the first comparative

study of protein docking algorithms for docking

unbound membrane proteins. It is also the largest com-

parison study including bound and unbound membrane

complexes, including homo and heterodimers. We show

that including information about the membrane environ-

ment as an additional one-body residue-based energy

term improves the prediction capacity of our docking

algorithm, DOCK/PIERR, significantly. We use this

extended DOCK/PIERR method to study the dimeriza-

tion of the transmembrane fragment of C99, the 99

amino acid C-terminal fragment, C99, of the Amyloid

Precursor Protein.

We draw a number of conclusions that characterize

the performance of the extended DOCK/PIERR method

in a detailed application to the prediction of C99 homo-

dimers in membrane and micelle environments. (1) The

results from docking match well with results from

implicit solvent simulation and are capable of capturing

the diversity of topologically distinct coiled-coil struc-

tural states. (2) Structural ensembles derived from

explicit solvent simulations differ from those derived

using an implicit solvent model: explicit solvent struc-

tures have more protein–membrane contacts and implicit

solvent structures have more protein–protein contacts.

This difference suggests that implicit solvent models and

our docking procedure are not able to reproduce the

contacts formed by discrete solvent molecules. (3)

Homodimer structural ensembles derived from simula-

tions in bilayer and micelle environments display signifi-

cant differences: bilayer-derived dimers have parallel

helices while micelle-derived dimers display an “X”-

shape, with helices oriented at a distinct crossing angle.

This preference for “X”-shape can be explained on the

basis of entropy (rotational freedom of the dimers in

micelle) and membrane curvature.

There are several experimentally derived homodimer

structures formed from fragments of APP-C99 peptide.

Solid-state NMR studies of APP-C9922-64 lead to the

first experimentally derived homodimer structure,26 in

which the TM helices form a right-handed coiled-coil

stabilized by contacts facilitated by the GxxxG motif

and consistent with the Gly-in structures proposed in

this study. Subsequently, solution NMR was used to

derive homodimer structures for APP-C9915-55 in DPC

micelle41 and APP-C9928-55 in DPC micelle.42 In the

former study, a left-handed coiled-coil structure was

proposed. In the later study, a right-handed coiled coil

structure was proposed that is in good agreement with

simulated structures of the APP-C9915-55 homodimer in

a DPC micelle environment.82 However, those simu-

lated and experimental structures for the homodimer in

a DPC micelle, which are predominantly Gly-side and

Gly-out structures, differ substantially from the simu-

lated structures for APP-C9915-55 homodimer in POPC

bilayer, which is predominantly composed of Gly-in

structures.82 The results of this study of APP-C9923–55

homodimer, and simulation studies of the APP-C9915-55

homodimer,36,82 suggest that the TM homodimer is

best characterized by Gly-in structures in a POPC

bilayer and Gly-side or Gly-out structures in a DPC

micelle. As such, our simulation results, which predict a

strong influence of environment on the APP-C99 homo-

dimer structure, are consistent with the results of exist-

ing experimental studies.

Predicting the structure of higher order amyloid aggre-

gates and developing additional potentials trained on

membrane protein interfaces represent some of the

promising avenues for future work in the area of mem-

brane complex prediction.

Availability: The membrane potential and docking

scores are available as downloads from http://clsb.ices.

utexas.edu/web/dock_details.html.

REFERENCES

1. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully

automated algorithm for protein-protein docking. Nucleic Acids Res

2004;32:W96–W99.

2. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein–

protein docking approach based on biochemical or biophysical

information. J Am Chem Soc 2003;125:1731–1737.

3. Chen R, Li L, Weng ZP. ZDOCK: an initial-stage protein-docking

algorithm. Proteins Struct Funct Genet 2003;52:80–87.

4. Tovchigrechko A, Vakser IA. Development and testing of an auto-

mated approach to protein docking. Proteins 2005;60:296–301.

5. Hwang H, Pierce B, Mintseris J, Janin J, Weng ZP. Protein–protein

docking benchmark version 3.0. Proteins 2008;73:705–709.

6. Hwang H, Vreven T, Janin J, Weng ZP. Protein–protein docking

benchmark version 4.0. Proteins 2010;78:3111–3114.

7. Sanders CR, Nagy JK. Misfolding of membrane proteins in health

and disease: the lady or the tiger? Curr Opin Struc Biol 2000;10:

438–442.

8. Selent J, Kaczor AA. Oligomerization of G protein-coupled recep-

tors: computational methods. Curr Med Chem 2011;18:4588–4605.

9. Comeau SR, Camacho CJ. Predicting oligomeric assemblies: N-mers

a primer. J Struct Biol 2005;150:233–244.

10. Cosconati S, Marinelli L, Lavecchia A, Novellino E. Characterizing

the 1,4-dihydropyridines binding interactions in the L-type Ca21

channel: model construction and docking calculations. J Med Chem

2007;50:1504–1513.

11. Ponomarev SY, Audie J. Computational prediction and analysis of

the DR6-NAPP interaction. Proteins 2011;79:1376–1395.

Docking Membrane Proteins

PROTEINS 2183



12. Simon AC, Simpson PJ, Goldstone RM, Krysztofinska EM, Murray

JW, High S, Isaacson RL. Structure of the Sgt2/Get5 complex pro-

vides insights into GET-mediated targeting of tail-anchored mem-

brane proteins. Proc Natl Acad Sci USA 2013;110:1327–1332.

13. Casciari D, Seeber M, Fanelli F. Quaternary structure predictions of

transmembrane proteins starting from the monomer: a docking-

based approach. BMC Bioinform 2006;7:340.

14. Kaczor AA, Selent J, Sanz F, Pastor M. Modeling complexes of

transmembrane proteins: systematic analysis of ProteinProtein dock-

ing tools. Mol Inform 2013;32:717–733.

15. MacCallum JL, Bennett WFD, Tieleman DP. Partitioning of amino

acid side chains into lipid bilayers: results from computer simulations

and comparison to experiment. J Gen Physiol 2007;129:371–377.

16. Viswanath S, Ravikant DVS, Elber R. Improving ranking of models

for protein complexes with side chain modeling and atomic poten-

tials. Proteins 2013;81:592–606.

17. Ravikant DVS, Elber R. Energy design for protein–protein interac-

tions. J Chem Phys 2011;135:065102.

18. Ravikant DVS, Elber R. PIE-efficient filters and coarse grained

potentials for unbound protein–protein docking. Proteins 2010;78:

400–419.

19. Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G,

Hirotani N, Horikoshi Y, Kametani F, Maeda M, Saido TC, Wang

R, Ihara Y. Longer forms of amyloid beta protein: implications for

the mechanism of intramembrane cleavage by gamma-secretase.

J Neurosci 2005;25:436–445.

20. Zhao GJ, Tan JX, Mao GZ, Cui MZ, Xu XM. The same gamma-

secretase accounts for the multiple intramembrane cleavages of APP.

J Neurochem 2007;100:1234–1246.

21. Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S,

Sato T, Fei JZ, Aimoto S, Courtoy PJ, Smith SO, Constantinescu

SN, Octave JN. Amyloidogenic processing but not amyloid precur-

sor protein (APP) intracellular C-terminal domain production

requires a precisely oriented APP dimer assembled by transmem-

brane GXXXG motifs. J Biol Chem 2008;283:7733–7744.

22. Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL,

Beyreuther K. Amyloid plaque core protein in alzheimer-disease and

down syndrome. Proc Natl Acad Sci USA 1985;82:4245–4249.

23. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y.

Visualization of a-beta-42(43) and a-beta-40 in senile plaques with

end-specific a-beta monoclonals—evidence that an initially depos-

ited species is a-beta-42(43). Neuron 1994;13:45–53.

24. Munter LM, Botev A, Richter L, Hildebrand PW, Althoff V, Weise

C, Kaden D, Multhaup G. Aberrant amyloid precursor protein

(APP) processing in hereditary forms of alzheimer disease caused by

APP familial alzheimer disease mutations can be rescued by muta-

tions in the APP GxxxG motif. J Biol Chem 2010;285:21636–21643.

25. Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise

C, Pipkorn R, Schaefer M, Langosch D, Multhaup G. GxxxG motifs

within the amyloid precursor protein transmembrane sequence are

critical for the etiology of A beta 42. EMBO J 2007;26:1702–1712.

26. Sato T, Tang TC, Reubins G, Fei JZ, Fujimoto T, Kienlen-Campard

P, Constantinescu SN, Octave JN, Aimoto S, Smith SO. A helix-to-

coil transition at the epsilon-cut site in the transmembrane dimer

of the amyloid precursor protein is required for proteolysis. Proc

Natl Acad Sci USA 2009;106:1421–1426.

27. Scheuermann S, Hambsch B, Hesse L, Stumm J, Schmidt C, Beher

D, Bayer TA, Beyreuther K, Multhaup G. Homodimerization of

amyloid precursor protein and its implication in the amyloidogenic

pathway of Alzheimer’s disease. J Biol Chem 2001;276:33923–33929.

28. Gorman PM, Kim S, Guo M, Melnyk RA, McLaurin J, Fraser PE,

Bowie JU, Chakrabartty A. Dimerization of the transmembrane

domain of amyloid precursor proteins and familial Alzheimer’s dis-

ease mutants. BMC Neurosci 2008;9–17.

29. Eggert S, Midthune B, Cottrell B, Koo EH. Induced dimerization of

the amyloid precursor protein leads to decreased amyloid-beta pro-

tein production. J Biol Chem 2009;284:28943–28952.

30. Goo JH, Park WJ. Elucidation of the interactions between C99, pre-

senilin, and nicastrin by the split-ubiquitin assay. DNA Cell Biol

2004;23:59–65.

31. Lu JX, Yau WM, Tycko R. Evidence from solid-state NMR for non-

helical conformations in the transmembrane domain of the amyloid

precursor protein. Biophys J 2011;100:711–719.

32. Das C, Berezovska O, Diehl TS, Genet C, Buldyrev I, Tsai JY,

Hyman BT, Wolfe MS. Designed helical peptides inhibit an intra-

membrane protease. J Am Chem Soc 2003;125:11794–11795.

33. Wolfe MS, Guenette SY. App at a glance. J Cell Sci 2007;120:3157–

3161.

34. Barrett PJ, Song YL, Van Horn WD, Hustedt EJ, Schafer JM,

Hadziselimovic A, Beel AJ, Sanders CR. The amyloid precursor pro-

tein has a flexible transmembrane domain and binds cholesterol.

Science 2012;336:1168–1171.

35. Dominguez L, Meredith SC, Straub JE, Thirumalai D. Transmem-

brane fragment structures of amyloid precursor protein depend on

membrane surface curvature. J Am Chem Soc 2014;136:854–857.

36. Miyashita N, Straub JE, Thirumalai D, Sugita Y. Transmembrane

structures of amyloid precursor protein dimer predicted by replica-

exchange molecular dynamics simulations. J Am Chem Soc 2009;

131:3438–3439.

37. Pester O, Barrett PJ, Hornburg D, Hornburg P, Probstle R,

Widmaier S, Kutzner C, Durrbaum M, Kapurniotu A, Sanders CR,

Scharnagl C, Langosch D. The backbone dynamics of the amyloid

precursor protein transmembrane helix provides a rationale for the

sequential cleavage mechanism of gamma-secretase. J Am Chem Soc

2013;135:1317–1329.

38. Wang H, Barreyro L, Provasi D, Djemil I, Torres-Arancivia C, Filizola

M, Ubarretxena-Belandia I. Molecular determinants and thermody-

namics of the amyloid precursor protein transmembrane domain

implicated in Alzheimer’s disease. J Mol Biol 2011;408:879–895.

39. Song YL, Hustedt EJ, Brandon S, Sanders CR. Competition

between homodimerization and cholesterol binding to the C99

domain of the amyloid precursor protein. Biochemistry 2013;52:

5051–5064.

40. MacKenzie KR, Prestegard JH, Engelman DM. A transmembrane

helix dimer: structure and implications. Science 1997;276:131–

133.

41. Nadezhdin KD, Bocharova OV, Bocharov EV, Arseniev AS. Dimeric

structure of transmembrane domain of amyloid precursor protein

in micellar environment. FEBS Lett 2012;586:1687–1692.

42. Chen W, Gamache E, Rosenman DJ, Xie J, Lopez MM, Li YM,

Wang CY. Familial Alzheimer’s mutations within APPTM increase A

beta 42 production by enhancing accessibility of epsilon-cleavage

site. Nat Commun 2014;5:3037.

43. Dell’Orco D, De Benedetti PG, Fanelli F. In silico screening of

mutational effects on transmembrane helix dimerization: insights

from rigid-body docking and molecular dynamics simulations.

J Phys Chem B 2007;111:9114–9124.

44. Viswanath S, Ravikant DV, Elber R. DOCK/PIERR: web server for

structure prediction of protein–protein complexes. Methods Mol

Biol 2014;1137:199–207.

45. Lensink MF, Wodak SJ. Docking, scoring, and affinity prediction in

CAPRI. Proteins 2013;81:2082–2095.

46. Joachims T, Galor T, Elber R. Learning to align sequences: a maxi-

mal Margin Approach. In: Leimkuhler B, editor. New Algorithms

for Macromolecular simulation. Berlin: Springer Verlag; 2005;57–69.

47. Kabsch W, Sander C. Dictionary of protein secondary structure—

pattern-recognition of hydrogen-bonded and geometrical features.

Biopolymers 1983;22:2577–2637.

48. Tusnady GE, Dosztanyi Z, Simon I. TMDET: web server for detect-

ing transmembrane regions of proteins by using their 3D coordi-

nates. Bioinformatics 2005;21:1276–1277.

49. Tusnady GE, Dosztanyi Z, Simon I. PDB_TM: selection and mem-

brane localization of transmembrane proteins in the protein data

bank. Nucleic Acids Res 2005;33:D275–D278.

S. Viswanath et al.

2184 PROTEINS



50. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH.

The MARTINI force field: coarse grained model for biomolecular

simulations. J Phys Chem B 2007;111:7812–7824.

51. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li

KY, Zheng JF, Vakili P, Paschalidis IC, Vajda S. Achieving reliability

and high accuracy in automated protein docking: ClusPro, PIPER,

SOU, and stability analysis in CAPRI rounds 13-19. Proteins 2010;

78:3124–3130.

52. Pierce B, Weng ZP. ZRANK: reranking protein docking predictions

with an optimized energy function. Proteins 2007;67:1078–1086.

53. Jayasinghe S, Hristova K, White SH. MPtopo: a database of mem-

brane protein topology. Protein Sci 2001;10:455–458.

54. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller

W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res 1997;25:

3389–3402.

55. Sali A, Blundell TL. Comparative protein modeling by satisfaction

of spatial restraints. J Mol Biol 1993;234:779–815.

56. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart

AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A.

Tools for comparative protein structure modeling and analysis.

Nucleic Acids Res 2003;31:3375–3380.

57. Zhang Y, Skolnick J. TM-align: a protein structure alignment algo-

rithm based on the TM-score. Nucleic Acids Res 2005;33:2302–2309.

58. Elber R, Roitberg A, Simmerling C, Goldstein R, Li HY, Verkhivker

G, Keasar C, Zhang J, Ulitsky A. Moil—a program for simulations

of macromolecules. Comput Phys Commun 1995;91:159–189.

59. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP,

Marrink S-J. The MARTINI coarse grained forcefield: extension to

proteins. J Chem Theory Comput 2008;4:819–834.

60. Marrink SJ, de Vries AH, Tieleman DP. Lipids on the move: simula-

tions of membrane pores, domains, stalks and curves. Biochim Bio-

phys Acta 2009;1788:149–168.

61. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE,

Berendsen HJC. Gromacs: fast, flexible, and free. J Comput Chem

2005;26:1701–1718.

62. Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full-

atom protein models from reduced representations. J Comput

Chem 2008;29:1460–1465.

63. Jo S, Kim T, Im W. Automated builder and database of protein/

membrane complexes for molecular dynamics simulations. PloS

One 2007;2:e880.

64. Jo S, Kim T, Iyer VG, Im W. Software news and updates—CHAR-

NIM-GUI: a web-based graphical user interface for CHARMM.

J Comput Chem 2008;29:1859–1865.

65. Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle

builder for pure/mixed micelle and protein/micelle complex systems.

J Chem Inform Model 2013;53:2171–2180.

66. Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi

Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W.

CHARMM-GUI membrane builder toward realistic biological mem-

brane simulations. J Comput Chem 2014;35:1997–2004.

67. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD,

Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D,

Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T,

Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith

JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D,

Karplus M. All-atom empirical potential for molecular modeling and

dynamics studies of proteins. J Phys Chem B 1998;102:3586–3616.

68. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ,

Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor

RW. Update of the CHARMM all-atom additive force field for lipids:

validation on six lipid types. J Phys Chem B 2010;114:7830–7843.

69. Huang J, MacKerell AD. CHARMM36 all-atom additive protein

force field: validation based on comparison to NMR data.

J Comput Chem 2013;34:2135–2145.

70. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen

LG. A smooth particle mesh Ewald method. J Chem Phys 1995;103:

8577–8593.

71. Hoover WG. Canonical dynamics—equilibrium phase-space distri-

butions. Phys Rev A 1985;31:1695–1697.

72. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear

constraint solver for molecular simulations. J Comput Chem 1997;

18:1463–1472.

73. Feig M, Karanicolas J, Brooks CL. MMTSB tool set: enhanced sam-

pling and multiscale modeling methods for applications in struc-

tural biology. J Mol Graph Model 2004;22:377–395.

74. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S,

Karplus M. Charmm—a program for macromolecular energy, mini-

mization, and dynamics calculations. J Comput Chem 1983;4:187–

217.

75. Mackerell AD, Feig M, Brooks CL. Extending the treatment of back-

bone energetics in protein force fields: limitations of gas-phase quan-

tum mechanics in reproducing protein conformational distributions in

molecular dynamics simulations. J Comput Chem 2004;25:1400–1415.

76. Chen JH, Im WP, Brooks CL. Balancing solvation and intramolecu-

lar interactions: toward a consistent generalized born force field.

J Am Chem Soc 2006;128:3728–3736.

77. Lensink M, Wodak SJ. Docking and scoring protein interactions:

CAPRI 2009. Proteins 2010;78:3073–3084.

78. Glaser F, Steinberg DM, Vakser IA, Ben-Tal N. Residue frequencies

and pairing preferences at protein–protein interfaces. Proteins Struct

Funct Genet 2001;43:89–102.

79. Zhang C, Vasmatzis G, Cornette JL, DeLisi C. Determination of

atomic desolvation energies from the structures of crystallized pro-

teins. J Mol Biol 1997;267:707–726.

80. Mendez R, Leplae R, De Maria L, Wodak SJ. Assessment of blind

predictions of protein–protein interactions: current status of dock-

ing methods. Proteins 2003;52:51–67.

81. Janin J. Assessing predictions of protein-protein interaction: the

CAPRI experiment. Protein Sci 2005;14:278–283.

82. Dominguez L, Foster L, Meredith SC, Straub JE, Thirumalai D.

Structural heterogeneity in transmembrane amyloid precursor pro-

tein homodimer is a consequence of environmental selection. J Am

Chem Soc 2014;136:9619–9626.

Docking Membrane Proteins

PROTEINS 2185


