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Network representations are becoming increasingly popular for analyzing kinetic data from tech-
niques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous
phase space trajectories into a relatively small number of discrete states helps in visualization of the
data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular
networks derived from molecular dynamics simulations growing in number, they are also getting in-
creasingly complex, owing partly to the growth in computer power that allows us to generate longer
and better converged trajectories. The increased complexity of the networks makes simple interpre-
tation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we
focus on various network representations of kinetic data and algorithms to identify important edges
and pathways in these networks. The kinetic data can be local and partial (such as the value of rate
coefficients between states) or an exact solution to kinetic equations for the entire system (such as
the stationary flux between vertices). In particular, we focus on the Milestoning method that pro-
vides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool
for analyzing molecular mechanism in Milestoning networks. A closely related definition was made
in the context of Transition Path Theory. We consider three algorithms to find Global Maximum
Weight Pathways: Recursive Dijkstra’s, Edge-Elimination, and Edge-List Bisection. The asymptotic
efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List
Bisection and Recursive Dijkstra’s algorithms are most efficient for sparse and dense networks, re-
spectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation.
Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpre-
tation of molecular mechanisms. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827495]

I. INTRODUCTION

The use of networks to describe and analyze the kinetics
and thermodynamics of molecular systems has grown rapidly
in recent years. The growing interest is partly a result of the
increase in computer power that produces longer Molecular
Dynamics (MD) simulations and better sampling for stabil-
ity and kinetic analysis. Analyzing the vast data produced by
these simulations is a significant challenge. One approach to
analyze the data is to use networks (Figure 1). For example,
metastable states are identified and are mapped to vertices
(nodes). Transitions between the states are modeled by edges
between the vertices. Mapping continuous phase space trajec-
tories into a relatively small number of discrete states helps
in visualization of the data and in dissecting complex dynam-
ics to concrete mechanisms. In particular, mappings that are
based on the Transition Path Theory,1 Master equation,2 or
Directional Milestoning3 are well-defined mathematical pro-
cedures and have been previously used in a number of cases
(e.g., in Markov State Model (MSM)2, 4, 5 or Milestoning6–10).

a)Author to whom correspondence should be addressed. Electronic mail:
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While the above analysis is conducted postmortem (data
generation is followed by analysis), a less sequential process
is also possible, in which the network is generated in parallel
to the computations of the MD trajectories. It has been used
previously with methods like Hyper-Dynamics,11 MSM,4 and
Milestoning.9 The advantage of frequent exchanges of infor-
mation between networks and continuous space is the abil-
ity to identify “on-the-fly,” regions that are poorly or over-
sampled. For example, the network analysis may identify an
important transition (or an edge) for which only a few suc-
cessful events were recorded. As a response we sample more
trajectories for that edge, while cutting resources from edges
that are converged statistically.

A third scenario in which the network representation has
gained popularity is in the field of reaction paths. The reac-
tion path approach is a compact and efficient way to obtain
information on the kinetics and thermodynamics of molecular
systems under a set of assumptions (e.g., the use of local ex-
pansion in coordinates in the neighborhood of a transition or
a metastable state). Since no explicit time evolution is consid-
ered, the calculations are much cheaper than MD simulation.
Reaction pathways can be computed as one-dimensional
curves in complex space, dramatically reducing the
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FIG. 1. A schematic representation of mapping continuous space and trajec-
tories to a network. We have five cells in phase space denoted by Xα , Xβ , Xγ ,
Xδ , Xε . Each cell can be mapped to a network vertex and the edges would
be between vertices, e.g., (α, β) and (β, γ ). Sometimes the cells are repre-
sented by specific conformations (anchors) that are illustrated in the figure by
the blue ellipses. In an alternate network representation, the vertices can be
interfaces or milestones denoted on the figure by dashed red lines, which in-
dicate the boundary between domains. There are six milestones in the above
figure, Ii − In. Continuous trajectories are mapped to the network either by
their location in phase space or by the last milestone that they have passed
(color coded curves in the figure). On the right side of the figure we show
network representations. The top figure is an anchor-based network and the
lower figure is based on the milestones.

dimensionality of the original system.12–21 However,
with increases in the complexity of systems, the concept of
the reaction path was extended to include multiple crossing
pathways or networks. Early studies of this type go back
to conformational transitions in peptides22 and continue to
isomerization of flexible molecules, fluidity of Lennard Jones
clusters, and protein folding (see the book23).

Compared to the single reaction coordinate, the network
of pathways is considerably richer. One of the obvious mecha-
nistic questions from a network is, “Are there particularly im-
portant pathways in the networks?” and if there are, “how do
we find them?” Another question is “Are there bottlenecks in
the networks?” These bottlenecks are edges of low flux in the
network, that require significant efforts to pass through, but
that must be crossed on the way from the reactant to the prod-
uct state. The information about pathways and bottlenecks is
useful for qualitative analysis of the process and to gain more
insight into the behavior of the system. The problem of find-
ing these important pathways and bottlenecks is addressed in
the present paper.

Various representations of networks for molecular sys-
tems are discussed, and efficient and scalable algorithms are
presented for finding important pathways and bottlenecks in
these networks. We also consider different kinetic measures
to represent the mechanism of the process and argue that the
flux, being an exact solution of the kinetic equations, is a rig-
orous yardstick that can be used in qualitative analysis of re-
action pathways. This is to be contrasted with the use (for ex-
ample) of rate coefficients. The discussions are supported by
case studies of unfolding of a helix under load and membrane
permeation.

II. DEFINITION OF THE NETWORK

There are multiple plausible definitions for a molecu-
lar network, and we discuss some of them below. The most
straightforward choices for vertices and edges are local en-

ergy minima and first order saddle points, respectively. The
weights of the nodes and the edges can be estimated using
harmonic partition functions near the stationary points and
the (harmonic) transition state theory.24 Solvent effects may
be included with effective solvation energies such as GBSA.25

This approach for network construction goes back to 1989.26

Wales and colleagues used these networks extensively23 to
build connectivity trees. These trees are networks of specific
topology (no cycles) and are primarily used for qualitative
analysis. To extract thermodynamic and kinetic properties, the
full network is used.

The definition of vertices and edges is less obvious when
we consider time series obtained from molecular dynamic
simulations instead of static energy minima and saddle points.
Rather than mapping a point to a point (e.g., energy minimum
to a vertex) we map a volume in phase space and trajectory
fragments to vertices and edges. This mapping can be made
in several ways. The two different approaches that we con-
sider are (i) state-based and (ii) flux-based. In the state-based
method, we consider the nodes to be volumes in phase space
or in conformation space, which is in the spirit of MSMs. In
the flux-based method, we consider the nodes to be interfaces
(or milestones) and the edges represent transitions between
the interfaces. Since there are multiple interfaces for a single
phase-space volume element, the network between interfaces
is likely to be richer. Furthermore, the definition of arrival
and departure of a trajectory fragment to a coarse state can
be made more precisely based on passing of an interface in-
stead of arrival to a volume which may require additional re-
laxation time. The two formulations, in the general case, are
not equivalent as shown in Figure 1.

The molecular process is represented as a weighted, di-
rected graph G = (V,E), where V is the set of vertices and E
is the set of edges in G. An edge from vertex u to vertex v is
represented as (u, v) and has a weight, w(u, v). Note that the
edges are directed, i.e., edge (u, v) is not the same as (v, u).
The edge weights may have different physical realizations.
For example, edge weights and states may be defined by the
physical distance between two vertices (as is done by geomet-
ric clustering), the phase space flux between nodes, or the rate
constant of transitions between the nodes. It is probably best
to build the network from the exact solution of the kinetics;
namely, based on the flux between the states. Below, we will
consider the weights abstractly (to the extent possible) and
only after derivation of the algorithms, concrete examples of
weights that are typical of kinetic networks will be discussed.

We comment that the use of a directed graph does not vio-
late equi-partition. A vertex vi will have a directed edge point-
ing to vj and at the same time vj will have a directed edge to
vi which allows balancing of the two fluxes and equipartition-
ing. Additionally, we note that the words network and graph
are equivalent, as are the words node and vertex, and we will
use them both. The reader may refer to the Appendix for a list
of definitions and alternate terms occurring in this paper.

III. NETWORK REPRESENTATIONS OF KINETIC DATA

We focus below on network representations used in
the method of Milestoning.3, 6, 7 However, they are equally
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applicable to networks generated by other methods such
as MSM4 or motion planning.27 The representation of di-
rectional milestoning data has been previously described in
Refs. 3 and 6. In brief, we consider a set of anchors, or phase
space points {Xα}Nα=1, and milestones (or interfaces) {Ij }Jj=1
(Figure 1). The milestones are interfaces separating phase
space volumes that are associated with the anchors. Hence-
forth, we use the indices {α, β, γ . . . } to denote the anchors
and indices {i, j, k. . . } to denote milestones.

The dual representation, by anchors and milestones,
makes it possible to visualize more than one network for
the same process. Depending on the choice of nodes, as
(i) anchors or (ii) milestones, we have two types of networks:
(i) state-space network where the nodes are anchors or phase
space volumes, and (ii) a flux-space network, where the nodes
are milestones.

With the identification of the nodes, we are left with the
question of what weights to choose, for the edges of these
two types of graphs. We have chosen to concentrate on the
flux, as flux between two nodes is the most informative quan-
tity that we can attach to an edge. This choice is in the spirit
of Transition Path Theory,28 and in the spirit of the max flux
formulations of optimal pathways.6, 29–31 In Milestoning, the
flux at milestone i (the number of molecules that pass per unit
time the ith milestone) is denoted by qi. The basic Milestoning
equation32 is of conservation of flux,

qi(t) = 2 · ηiδ(t) +
∑

j

t∫
0

Kij (t − t ′)qj (t ′)dt ′ ∀i, (1)

where qi(t) is the flux through milestone i at time t, ηi is the
initial condition (the probability that the last milestone that
passed before or at time zero is i), and Kij(t) is the transition
probability that a trajectory that starts at milestone i will pass
through milestone j exactly after time t. Hence, Eq. (1) keeps
track of the number of trajectories and ensures that the flux is
conserved.

For network calculations it is convenient to consider a
stationary flux or steady state condition in which the flux, qi,
is time independent. The stationary matrix is K. It is the time

integrated transition matrix (Kij ≡
∞∫
0

Kij (t)dt) which is the

probability that a trajectory initiated at milestone i will hit
(and terminate at) another milestone j before any other mile-
stone. We obtain a stationary flux by setting cyclic boundary
conditions. The final milestone f is set to return all the flux that
arrives to it, to the first milestone. Hence, the matrix element
Kfi is set to one if milestone i is the first milestone and is set
to zero otherwise. The above adjustment of K and the require-
ment of stationary flux/steady state results in a remarkably
simple equation for the stationary flux:6

q(Id − K) = 0 Kf i =
{

1 i = 1
0 i �= 1

}
, (2)

where q is the vector of all stationary fluxes. As discussed ex-
tensively in earlier papers about Milestoning32, 33 K is com-
puted from atomically detailed trajectories as K ≈ nij/ni,
where ni is the number of trajectories initiated at milestone
i and nij is the number of trajectories that started at i and the

first milestone they reach (which is different from i) is mile-
stone j. The length of the vector q is J and the dimensionality
of K is J × J, where J is the number of milestones. Id is the
identity matrix.

The flux information stored in q is used in graphs as
edge weights. As mentioned previously, we have two types of
graphs, state-space graphs and flux-space graphs. There are
more milestones than anchors and hence the picture obtained
by the flux-space graph is more detailed and potentially in-
cludes more information than the state-space graph. But the
state-space graph is simpler, and for interpretation purposes
it can be beneficial to look at the system at the anchor level.
We, therefore, convert the flux-space paths to state-space for
visualization purposes. Below, we discuss how edge weights
are obtained from fluxes for both state-space and flux-space
graphs. We also discuss another graph representation based on
rate coefficients instead of fluxes. For the flux-space graphs,
we additionally explain how to convert the paths to state-
space.

A. State-space (anchor-based) graphs with flux-based
edge weights

We create a graph with one vertex per anchor. Consider
two anchors α and β, which are associated in directional mile-
stoning, with two fluxes, qαβ and qβα , corresponding to the
interfaces (milestones) α → β and β → α. The weight of the
edge is the net flux w(α, β) = |qαβ − qβα|. The direction of
the edge is decided according to the larger flux. Hence, if qαβ

> qβα then the direction of the edge is from α to β and vice
versa. The main advantage of using graphs in anchor space,
apart from the ease of interpretation, is that the size of graphs
tends to be much smaller and hence calculating pathways is
less expensive in the flux-space graphs. In directional mile-
stoning, for instance, the number of milestones, i.e. nodes of
a flux-space graph, J, is much larger than the number of an-
chors N, and J can be as large as N(N − 1). However, anchor
space graphs are more likely to be dense graphs which means
that the number of edges in the graph, E, is much greater than
the number of vertices, V (E 	 V ).

B. Flux-space (milestone-based) graphs
with flux-based edge weights

We have one vertex per milestone in this graph. The prob-
ability matrix Kij determines the presence or absence of edges
between milestones. That is, an edge from milestone i to mile-
stone j exists if the corresponding matrix entry is positive
(Kij > 0). But determining edge weights is not obvious from
first sight since the flux information is for individual mile-
stones, while the edge weights represent information between
two connecting milestones. The following simple transforma-
tion converts vertex-based (milestone-based) weights to edge
weights between pairs of milestones. Consider milestone pair
i and j. The edge weight for edge (i, j) is w(i, j ) = |qj |, i.e.,
weight is equal to the flux associated with the second mile-
stone.

On the path (series of connected edges) from start state s
to end state t, the only milestone on the path whose flux we
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do not encounter as an edge weight on the path is the starting
milestone, since we consider only the flux of the latter mile-
stone, j, for every edge (i, j). This is fixed by adding an extra
(dummy) milestone, s′ before the first vertex, with an edge
from s′ to s whose weight is w(s ′, s) = qs , i.e., weight of the
edge is equal to the flux of the starting milestone. The path-
way calculations are then performed from s′ to t instead of s
to t.

Note that, for a fixed milestone j, all the edges leading
to milestone j in such a graph will have the same weight.
In other words, w(i, j ) = |qj | ∀i, s.t.Kij > 0. Hence, many
edges have the same weight (same flux in this case) and this
can result in degenerate paths.

For visualization, we convert the resulting paths from
milestone space to anchor space. For every milestone i in the
milestone-based path, associated with anchors α and β, we
add to the anchor-based path, an edge (α, β) between anchors
α and β, with edge weight w(α, β) = qi , i.e., edge weight
is the flux associated with the corresponding milestone. Note
that adjacent milestones always share an anchor. For exam-
ple, path 〈i, j, k〉 in milestoning space corresponds to path
〈α, β, γ , δ〉 in anchor space, assuming milestone i corre-
sponds to anchor pair (α, β), milestone j corresponds to an-
chor pair (β, γ ), and milestone k corresponds to (γ , δ).

C. Flux-space (milestone-based) graph based
on rate coefficients

Instead of solving Eq. (2) to get the flux, q, for a mile-
stone, a simpler approach is to weigh the edges of the graph
with rate coefficients or energy barriers.22, 26 This weighting
is local and does not take into account global topology and
explicit calculations of fluxes and rates. Local information
can be misleading and point to less relevant portions of the
graph. For example, using rate coefficients, it is possible to
weigh some edges highly if they have a fast local transition.
But at the same time, these edges may be off the main path-
way receiving little reactive flux. Local information is easier
to obtain than the global solution of rates, and use of rate co-
efficients or barrier height is common.

To compute the rate information from milestoning data,
we note that in the Markovian limit, the rate coefficients of
a Master equation between milestones can be computed di-
rectly using the transition matrix K and the vector τ , the av-
erage lifetimes of the milestones.34 The rate coefficient for a
transition between a milestone pair (i, j) (and the edge weight)
is given by

w(i, j ) = Kij

τi

. (3)

Converting paths based on rate coefficients in flux-space
(milestone-space) to state-space (anchor-space) is more com-
plex. The conversion is performed as follows. For every mile-
stone i (a milestone between anchors α and β) on the path in
flux-space, we add an edge in state-space between the anchors
α and β. Note that each pair of milestones (i, j) is associ-
ated with three anchors, (α, β, γ ) with milestone i associated
with anchor pair (α, β) and milestone j associated with an-
chor pair (β, γ ). Hence, edge weight between a pair of mile-

FIG. 2. Conversion of a flux-space path with milestones as vertices to a state-
space path with the corresponding anchors as vertices. The table in the figure
shows the mapping from milestone index to anchor index. The weight on each
milestone edge contributes to weights on two anchor edges. Each anchor edge
in the middle gets a contribution from two milestone edges.

stones (i, j) in the path in milestone space is shared equally
between anchor-based edges (α, β) and (β, γ ). Edge weights
from flux-space to anchor-space are converted as shown in
Figure 2. Note that each milestone edge contributes to weights
on two anchor edges and each anchor edge can get a contribu-
tion to its weight from two milestone edges (except the edges
at the ends of the path).

IV. DEFINITION OF PATHWAYS

A. Maximum weight path (MWP)

Given a start vertex, s, and end vertex, t, we seek a path
between s and t in G (a series of connected edges leading from
s to t), which has the maximum possible weight (of all paths
between s and t) for the minimum weight edge on the path.
In other words, consider all paths from s to t. Each of these
paths has a bottleneck, that in the present discussion, is the
edge with the minimum weight (EMW) along the path. The
s-t path with an EMW, which is larger than the EMW of all
other s-t paths, is the maximum weight path between s and t.
This has also been referred to as a dominant reaction pathway
in Transition Path Theory.1

The edge weights in the graph can also be referred to
as capacities, and the maximum weight path is known as
the maximum capacity path in computer science.35–38 When
edges in the graph are thought of as allowing material flow
through them, within certain capacities, it is easy to see that
the overall capacity of a path is limited by the narrowest edge
(bottleneck) in the path. Hence, the path with the widest bot-
tleneck is the maximum capacity path or maximum weight
path, in our terms. We provide in the Appendix, a concise list
of relevant path definitions and alternate terms.

An example graph is illustrated in Figure 3(a), which dis-
plays start and end vertices A and D, respectively, and capaci-
ties (edge weights) marked along the edges. A path from ver-
tex A to vertex D, passing through vertices B and C is written
as 〈A, B, C, D〉. There are multiple paths between A and D,
〈A, B, D〉, 〈A, C, D〉, and 〈A, B, C, D〉. Of these three paths,
the maximum weight paths are 〈A, B, D〉 and 〈A, B, C, D〉,
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FIG. 3. (a) An example graph with multiple paths between vertices of inter-
est, A and D. (b) Maximum weight paths (MWP) between A and D shown in
green. (c) Global maximum weight path (GMWP) between A and D shown
in red.

shown in green in Figure 3(b), since the EMW on both these
paths is the highest possible for an A to D path, and equal to
8, which is greater than 5, the minimum weight edge on path
〈A, C, D〉.

B. Global maximum weight path (GMWP)

The definition of maximum weight path stated above re-
lies on just one edge in the path, i.e., the EMW. It is possible
that more than one path will share the same EMW as shown
in the above example. It is useful to have a unique solution to
the path determination problem for ease of analysis and com-
munication of the results. We, therefore, define the GMWP,
which is an optimal maximum weight path that is as close as
possible to being unique. The global maximum weight path is
referred to as the representative dominant reaction pathway
in Transition Path Theory.1 Note, however, that the theories
and the presentation of the graphs in Transition Path Theory
are different from what we discuss here.

Let a path, m, be a maximum weight path between s and
t. If for every pair of vertices on m, the subpath on m be-
tween those vertices is a maximum weight path, then m is a
GMWP. The GMWP for a given pair of vertices is unique up
to the degeneracy of paths branching from the same vertex in
the graph. GMWP is analogous to a minimum energy path in
continuous space, and the EMW is analogous to a transition
state. In fact, the analogy between paths can be made stronger
in the context of the maximum flux path for diffusive pro-
cesses, that was introduced by Berkowitz and McCammon29

in continuous space (with the assumption of a small normal
cross section at every point along the path) and made into a
useful algorithm for optimization of reaction coordinates in
continuous space in Ref. 30 and more recently in Ref. 31. In
previous studies, we defined a discrete version of the max flux
path for a network as a GMWP.6, 8, 10

In the example shown in Figure 3, both 〈A, B, C, D〉 and
〈A, B, D〉 are maximum weight paths, with the same EMW,
(A, B). But the maximum weight path between B and D is 〈B,
C, D〉 with minimum edge weight 10, and not 〈B, D〉, which
has a minimum edge weight 9. Hence, the global maximum
weight path between A and D, shown in red in Figure 3(c), is
〈A, B, C, D〉 since all its subpaths are also maximum weight
paths.

More formally, we define W (s, t, p), weight of a path, p,
from vertex s to t, as

W (s, t, p) = min
(u,v)∈p

w(u, v). (4)

In Eq. (4), (u, v) represents an edge from vertex u to vertex
v, and w(u, v) is the weight or capacity of the edge (u, v).
Equation (4) states that the weight of a path p is equal to the
weight of the EMW on the path. We define a path μ to be a
maximum weight path between vertices s and t if μ satisfies
Eq. (5):

W (s, t, μ) ≥ W (s, t, p) ∀p. (5)

That is, the weight of path μ, from vertex s to t, is greater than
the weight of all other paths p from s to t. Or, the EMW on
path μ has a higher weight than the EMW of all other paths
p. We also represent the EMW of the maximum weight path,
μ, between s and t as M(s, t) ≡ W (s, t, μ).

We then define m as a GMWP from s to t, m = 〈s, v1,

v2 . . . .vi . . . vj . . . t〉, if it satisfies

W (νi, νj ,m) ≥ W (νi, νj , p) ∀p ∀νi, νj ∈ m, i < j.

(6)
Equation (6) states that, for any two vertices, vi and vj on
the path m, with vi appearing before vj on the path, the path
between vi and vj that has the maximum weight, among all
paths p from vi to vj , is exactly the path through m. We now
develop the algorithms for obtaining the MWP and GMWP.

V. DETERMINATION OF MAXIMUM WEIGHT
AND GLOBAL MAXIMUM WEIGHT PATHWAYS

A. Recursive Dijkstra’s algorithm

1. Dijkstra’s single source shortest path algorithm

a. Explanation and example. We first describe Dijkstra’s
algorithm39 which provides the base for efficient calculation
of the GMWP using the Recursive Dijkstra’s algorithm. Dijk-
stra’s single-source shortest path algorithm finds the shortest
paths and shortest path lengths from a single vertex of inter-
est, s, to all other vertices, in a graph G, where a non-negative
weight of an edge representing distance, d(u, v), is associated
with each edge (u, v). The length of the path, L, is determined
by the sum of the edge distances. The difference from our
previous discussion is that here, we minimize the sum of edge
distances on the path instead of maximizing the weight of the
EMW. The algorithm finds at each step, the vertex, u, with
the minimum path length from s and updates the shortest path
lengths of the vertices neighboring u. In other words, suppose
we know the shortest path length from s to u, and say u is
connected to v through edge (u, v). We can then update the
shortest path length from s to v, if the length obtained from
the path passing through u is smaller than the current estimate
of the shortest length to v.

To illustrate this, consider the graph in Figure 4. We are
interested in the shortest paths and lengths from vertex A to
all other vertices. We first start at vertex A, and update the
shortest (and only) path lengths of its neighbors, B and C,
as their edge weights, 2 and 4, respectively. In the next step,
we proceed to the (currently unexamined) vertex with the
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FIG. 4. Example graph demonstrating Dijkstra’s single-source shortest path
algorithm. This is a snapshot during the optimization process and not the fi-
nal result. We are calculating the shortest path lengths from A to all other
vertices. Path lengths marked by L are current estimates of the shortest path
length from vertex A to a given vertex. Vertices that have already been ex-
plored by the algorithm are marked with � and current vertex being examined
is marked with *.

minimum path length to A, which is B, and update the short-
est path lengths of the neighbors of B. D is a neighbor of B
whose initial path length from A is unknown, and is now up-
dated as L(B) + d(B, D) = 2 + 21 = 23, where L(B) is the
shortest path length from A to B and d(B, D) is the distance of
(B, D). The path lengths L, shown in the figure are the current
estimates of the shortest path lengths from A to each vertex
at this point in the algorithm. Vertices A and B have already
been examined and the next vertex to be processed is vertex C,
since it has the minimum length from A among the remaining
vertices (D is the only other remaining vertex). D is a neigh-
bor of C whose current best path length from A is 23, through
the path 〈A, B, D〉. But the shortest path length to D through
C is L(C) + d(C, D) = 4 + 12 = 16 (through the edge shown
in red). Hence, we update the shortest path length from A to
D, and its shortest path as 〈A, C, D〉.

Formally, if the current vertex being processed is u, and
vertex v is a neighbor of u, Eq. (7) holds, where L(u) and L(v)
represent the current known shortest path length from the
source vertex s to vertices u and v, respectively, and d(u, v)
is the edge weight distance on the edge (u, v). Note that since
the lengths are always computed from the same source vertex
s, we omit the explicit “s” in L (i.e., L(v) ≡ L(s, v) ∀v):

L(v) = min(L(v), L(u) + d(u, v)). (7)

b. Algorithm description. Dijkstra’s single-source short-
est path algorithm is given in Table I. Note that the algorithm
finds the shortest path lengths from a given vertex s to all other
vertices, even though we might be interested in the length to
only one particular vertex. We maintain an array, L, which is
indexed by vertex number and stores the current estimate of
the shortest path length from vertex s to a given vertex. The
list Adj (stands for adjacent) is our representation of the graph
and stores the list of neighbor vertices for each vertex. This
is similar to the neighbor list data structure used in molecular
dynamics, and is an input to the algorithm. For example, for
the graph in Figure 4, Adj(A) = [B, C] and Adj(B) = D.

Further, the current set of vertices to be processed is
maintained in the data structure Q, known as priority queue

TABLE I. Algorithm 1 - Dijkstra’s algorithm to find the shortest path
lengths from vertex s to all other vertices in graph G.

Procedure shortestPath(G,s)
For each v in G 1

L(v) = ∞ 2
3

L(s) = 0 4
Q = V // Add all the vertices to Q 5

6
while Q �= NULL 7

u = EXTRACT_MIN(Q) 8
for each v in Adj(u) 9

if L(v) > L(u) + d(u,v) // L(v) = min(L(v),L(u)+d(u,v)) 10
L(v) = L(u)+d(u,v) 11

return L 12

in literature on algorithms.40 A priority queue maintains an
ordering of the vertices such that the vertex with the mini-
mum path length from s can be extracted efficiently. A sim-
ple implementation of the priority queue is an array with one
element per vertex, storing path lengths from s for each ver-
tex. In order to extract the vertex with the minimum length,
one would have to do a linear search on this array. The most
efficient implementation of the priority queue uses a data
structure known as Fibonacci heap.40, 41 The procedure EX-
TRACT_MIN extracts from Q, at each call, the vertex with
the minimum path length from s. Vertices that are extracted
once are no longer considered again in the algorithm.

Initially, all path lengths are initialized to infinity (lines
1-2), the path length L(s) from the source vertex s to itself is
set to 0 (line 4), and all vertices in the graph are added to the
queue Q (line 5). The while loop (lines 7-11) executes until
all vertices in Q have been examined. At each execution of
the loop, a new vertex, u, is extracted from Q, which is the
vertex with the minimum path length from s. The first vertex
to be extracted is s, since only the path length to s has been
set to 0 initially, while all other lengths are infinity. At each
iteration of the loop, the path lengths for all the immediate
neighbors of current vertex u are then “relaxed” using Eq. (7)
(lines 9-11). When the algorithm terminates, all vertices have
their shortest path lengths from s in array L (line 12). The
proof of this algorithm is found in Ref. 40. The actual shortest
path lengths can be obtained by maintaining a pointer to the
previous vertex on the path, for each vertex.40

c. Efficiency. Consider an input graph with V vertices and
E edges. The time complexity of Dijkstra’s algorithm depends
on the implementation of the EXTRACT_MIN operation.
Consider the simple case where the graph is represented by
a V × V matrix of edge weights, and priority queue Q is rep-
resented by an array. EXTRACT_MIN here takes O(V ) time
since a linear search is necessary to find the vertex with the
minimum distance. Also, lines 9-11 inside the while loop take
O(V ) time per vertex since we are using a matrix representa-
tion of the graph, and the time to find the neighbors of a vertex
is linear in the number of vertices. Since the algorithm makes
V iterations through the while loop, one per vertex, and there
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are 2 O(V ) operations inside the loop, per iteration, the time
complexity of Dijkstra’s algorithm is O(V · 2V ) = O(V 2) in
the simple case.

The best-known theoretical time complexity of this algo-
rithm is O(V log V + E) using Fibonacci heaps for efficiently
implementing EXTRACT_MIN in O(log V ) time and adja-
cency lists for efficiently finding the neighbors of a vertex
in O(E) time across all vertices. The while loop again iter-
ates V times, with one EXTRACT_MIN operation per itera-
tion, giving a complexity of O(V log V ). Each edge is exam-
ined and relaxed only once throughout the algorithm, hence
the addition of E to the time complexity, which denotes the
total complexity of lines 9-11 over the course of the algo-
rithm. For sparse graphs (i.e., V ≈ E) the time complexity
is O(V log V + V ) = O(V log V ) (ignoring the linear term).
For dense graphs, (where E ≈ V 2), the time complexity is
O(V log V + V 2) = O(V 2) (considering only the term that
dominates at large V).

2. Modification to Dijkstra’s shortest path algorithm
for maximum weight path calculation

a. Explanation and example. We are given a graph G with
vertex set V and edge set E, with edge weight w(u, v) associ-
ated with each edge (u, v). Dijkstra’s shortest path algorithm,
Algorithm 1, can be easily modified to obtain an algorithm
to find a maximum weight path from a given vertex s to all
other vertices. The two key points in the modification are that
first, the minimization problem (shortest path length) in the
previous case is converted to a maximization problem (maxi-
mum EMW or maximum capacity). Second, instead of using
the length metric as the sum of distances in a path, we use the
metric of the weight of the EMW along the path.

Similar to Algorithm 1, the algorithm for maximum
weight path calculation finds at each step the vertex u with
the maximum weight (or maximum EMW) from s and up-
dates the maximum weights of the vertices neighboring u. In
other words, suppose we know the maximum weight of u, and
say u is connected to v through edge (u, v). We can then up-
date the maximum weight from s to v, if the weight of the
path to v passing through u is higher than the current estimate
of the maximum weight from s to v.

An example is shown in Figure 5, where we are inter-
ested in the maximum weight paths to all vertices from vertex
A. The weights of the MWPs, or the maximum weights from
A to each vertex are stored in the vector M. Initially, all ver-
tices have unknown maximum weights. We start at the source
vertex A, and update the maximum weights of its neighbors
B and C to their respective edge weights, 21 and 4, respec-
tively. In the next step, we proceed to B, the (currently un-
examined) vertex with the maximum weight from A. We up-
date the weight of B’s neighbor, D, to the minimum of M(B)
and w(B,D), which represents the minimum edge weight on
the path from A to D through B. D’s maximum weight path
is thus updated to 〈A, B, D〉 with maximum weight 2. The
weights, M, shown in the figure are the current estimates of
the maximum weight for each vertex, at this point in the algo-
rithm. Vertices A and B have already been examined and the
next vertex to be processed is vertex C. C has one neighbor,

FIG. 5. Example graph demonstrating single-source maximum weight algo-
rithm. This is a snapshot during the optimization process and not the final
result. See text for more details. We are calculating the maximum weights
from A to all other vertices. Weights marked by M are current estimates of
the maximum weight from vertex A to a given vertex. Vertices that have al-
ready been explored by the algorithm are marked with � and current vertex
being examined is marked with *.

D, whose current maximum weight from A is 2, through the
path 〈A, B, D〉. However, the path from A to D through C has
a higher weight of 4 (minimum of M(C) and w(C,D), which
is 4), through the edge shown in red. Hence, we revise the
maximum weight at D to 4 and change its maximum weight
path to 〈A, C, D〉.

Instead of Eq. (7), we arrive at the equality in Eq. (8)
for each vertex v adjacent to vertex u as before, where M(u)
and M(v) represent the current known maximum weight from
the source vertex to u and v, respectively, and w(u, v) is the
weight of the u-v edge. Note that the sum in the inner bracket
is changed to a minimum of two edges and the min condition
in the outer bracket is changed to max condition:

M(v) = max(M(v), min(M(u), w(u, v))). (8)

b. Algorithm description. The algorithm to calculate max-
imum weights in a directed graph is outlined in Table II.
The algorithm calculates maximum weight paths from a given
source vertex s to all other vertices. Note that the variable M
keeps track of the weight of the bottleneck edge or EMW, on
the maximum weight path from s to a particular vertex. The
arrays Q and Adj have the same meaning as in algorithm 1.
The only difference here is that the EXTRACT_MAX opera-
tion is used instead of EXTRACT_MIN, in order to extract the
current (unprocessed) vertex with the maximum weight from
s. Hence, the queue Q needs to store the vertices ordered by
their weight.

An extra array called bottleneck is used here to store
the actual vertices corresponding to the EMW (bottleneck
edge) in the maximum weight path for a given vertex. This
data structure is not required for calculating maximum weight
paths, but is required later on, when we use this maxi-
mum weight path algorithm to calculate the global maximum
weight path.

Initially, all the vertex weights are initialized to −1 (lines
1-2). The algorithm starts by initializing the weight of s from
itself to infinity (line 4) and adding all vertices to Q (line 5).
At each execution of the while loop (lines 7-16), the vertex
with the maximum weight to s is extracted from Q, and the
weights of its neighbors are updated, similar to the shortest
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TABLE II. Algorithm 2 - Modified Dijkstra’s algorithm for finding maxi-
mum weights and bottleneck (EMW) edges from s to all other vertices in a
graph G. Refer to the algorithm description for the meaning of all variables.

Procedure maxWeightPath(G,s)
For each v in G 1

M(v) = −1 2
3

M(s) = ∞ 4
Q = V // Add all the vertices in G 5

6
while Q �= NULL 7

u = EXTRACT_MAX(Q) 8
for each v in Adj(u) 9

if M(v) < min(M(u),w(u,v))
// M(v) = max(M(v),min(M(u),w(u,v)))

10

M(v) = min(M(u),w(u,v)) 11
12

if M(u) < w(u,v) 13
bottleneck(v) = bottleneck(u) 14

Else 15
bottleneck(v) = (u,v) 16

return bottleneck, M 17

path case. An extra computation is the updating of the ver-
tices in the EMW (bottleneck edge) along the path, for each
vertex (lines 13-16). When the algorithm terminates, the max-
imum weight among all paths from s to a particular vertex, i,
is retained in array element M[i] and the EMW for a particu-
lar vertex is in array bottleneck[i] (line 17). The proof of this
algorithm is exactly analogous to Dijkstra’s shortest path al-
gorithm. To obtain the actual maximum weight paths (and not
just the maximum weights), one can maintain a pointer to the
previous vertex on the path, for each vertex. This pointer will
be used to reconstruct the actual path.

c. Efficiency. The time complexity of the modified Di-
jkstra algorithm exactly follows the time complexity of the
Dijkstra algorithm outlined previously. With V vertices in a
graph, its complexity is O(V log V ) for sparse graphs (with
priority queue implemented using Fibonacci heaps and graphs
implemented as adjacency lists) and O(V 2) for dense graphs
and for simple implementations of sparse graphs (with prior-
ity queue implemented using arrays and graphs implemented
as adjacency matrices).

d. Applicability. We notice that the maximum weight path
can be computed efficiently in O(V log V ). This is a path
from the start to end state containing the transition edge. The
transition edge, EMW, is similar to the transition state of
chemical reactions. It is a good descriptor for processes dom-
inated by a single and large free energy barrier. In such a case,
the location of the transition edge is much more critical than
the rest of the GMWP and the algorithm outlined above can
be used to compute this path efficiently. However, when the
EMW is not dramatically lower in weight compared to other
weights along the path, the location of the entire pathway mat-
ters, which brings us next to the calculation of GMWP.

3. Recursive Dijkstra’s algorithm
for GMWP calculation

a. Explanation and example. The algorithm outlined in
Table II (Algorithm 2) returns a single maximum weight path
between s and t. For example, running Algorithm 2 on the
graph in Figure 3 returns the path 〈A, B, D〉, and not 〈A, B, C,
D〉 which is the GMWP for that graph. In general, Algorithm
2 is not guaranteed to return the GMWP, and is guaranteed to
return only a single maximum weight path. We note that the
GMWP is a special maximum weight path between s and t. It
is a path where all subpaths between pairs of vertices on the
same path are maximum weight paths. There can be multiple
maximum weight paths, all of them having the same EMW,
but the GMWP is unique up to the possible accidental degen-
eracy of edge weights of alternate paths.

We now introduce a new algorithm, the Recursive Dijk-
stra’s algorithm, which uses the maximum weight path algo-
rithm (Algorithm 2) repeatedly, to calculate the global maxi-
mum weight path. Given a pair of vertices s and t, we first use
Algorithm 2, the maximum weight path algorithm, to get the
EMW (u, v) between s and t. Note that Algorithm 2 returns
the EMW from s to all other vertices, but we only need that
piece of information for vertex t. Since w(u, v) is the maxi-
mum weight that can pass between s and t, (u, v) is an edge
common to all maximum weight paths between s and t and
hence it exists also in the GMWP between s and t. We then
have two subpaths to be determined in the GMWP, 〈s. . . u〉
and 〈v . . . t〉. We use the above technique recursively, i.e., use
Algorithm 2 again to find the EMW (bottleneck edge) edge
between s and u, and once more to find the EMW between
v and t. Thus, each call to Algorithm 2 provides us with one
edge on the GMWP. Once all subpaths are uniquely deter-
mined, we have the complete GMWP between s and t.

To illustrate this algorithm, let us refer to the example
graph in Figure 6. Suppose we are interested in the GMWP
between vertices A and G. Algorithm 2 called on A returns
(C, D) as the bottleneck edge between A and G. Hence, the
current estimate of the maximum flux path is 〈A. . . C, D. . . G〉.
Next we need to find the bottleneck edges between A and C,
which Algorithm 2 returns as edge (A, C) itself, and between

FIG. 6. An example graph showing the GMWP between vertices A and G in
red.
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TABLE III. Algorithm 3 – Recursive Dijkstra’s algorithm to find the global
maximum weight path between vertices s and t, in a directed graph, based
on the modified Dijkstra algorithm for maximum weight paths. Refer to the
Dijkstra’s algorithm description for the meaning of variables.

Procedure GlobalMaxWeightPath(G,s,t)
// base case, return empty path 1

if s = t 2
return <> 3

4
// call algorithm 2 to find bottleneck edge 5
(bottleneck,M) = MaxWeightPath(G,s) 6
(u,v) = bottleneck(t) 7

8
// find subpaths by recursion 9
p1 = GlobalMaxWeightPath(G,s,u) 10
p2 = GlobalMaxWeightPath(G,v,t) 11

12
// concatenate the subpaths 13
return 〈p1, (u, v), p2〉 14

D and G, which Algorithm 2 returns as (E, G). Now the global
maximum weight path is 〈A, C, D. . . E, G〉. Now we find the
bottleneck edge between D and E which is edge (D, E). Thus,
the global maximum weight path between A and G is 〈A, C,
D, E, G〉, the path marked in red in Figure 6.

b. Algorithm description. Algorithm 3, detailed in
Table III, relies on recursion. Given vertices s and t, it finds
the global maximum weight path between them in a directed
graph G. For the base case of a single vertex, i.e., s = t, the
path returned by the algorithm is a trivial empty path (lines
2-3). Otherwise, Algorithm 2 is used to find the EMW (u, v)
on a maximum weight path between s and t (lines 6-7). Note
that Algorithm 2 computes the list of bottleneck edges for
each vertex, from a given input vertex, in array bottleneck,
and also the maximum weights for each vertex from the input
vertex, in array M. Then Algorithm 3 is recursively called
to find the global maximum weight paths between subpaths
p1 = 〈s. . . u〉 and p2 = 〈v . . . t〉 (lines 10-11). Finally, the
subpaths are concatenated to get the GMWP between s and
t (line 14). We note that once an EMW (u, v) is known,
between s and t, the remaining subpaths p1 and p2 of the
GMWP can be computed independently, since the edges on
the subpaths will always be of higher weight than the EMW.

If there are degenerate edges in the graph, there can be
more than one GMWP, and hence it is recommended to com-
pute the first path, remove the bottleneck edge, and recompute
the path, repeating this procedure till no more unique paths are
found. This process guarantees that we get a complete picture
of the reaction pathways.

c. Efficiency. Each call to Algorithm 2 fixes one edge
on the GMWP. With V vertices and E edges in the graph,
the maximum length of a GMWP is of the order of V, so
Algorithm 2 is called a maximum of V times from Algo-
rithm 3. Note that Algorithm 2 itself takes O(V log V ) for
sparse graphs (with priority queue implemented using Fi-

bonacci heaps and graphs implemented as adjacency lists) and
O(V 2) for dense graphs and for simple implementations of
sparse graphs. Hence, Algorithm 3 takes O(V 2 log V ) time
for sparse graphs and O(V 3) for dense graphs and for simple
implementations of sparse graphs.

d. Optimization. We note that we are doing some extra
computations in Algorithm 3 that can be avoided. For exam-
ple, we first call Algorithm 2 on the source vertex, s, to get
the EMW (bottleneck) of the destination vertex t from s. Then
while computing the subpath from s to u, in the recursive step,
we again call Algorithm 2 on s to get the EMW of u from s.
But, Algorithm 2 calculates the EMWs for all vertices from s,
and not just for one particular destination vertex, t. Hence, we
can just run Algorithm 2 once on each vertex, and store the
EMWs of all other vertices from this vertex. This can be done
by making bottleneck a 2D array. For instance, bottleneck(i,j)
will give the EMW for the maximum weight path from vertex
i to vertex j. Each time we need the EMW from Algorithm
2 between two vertices i and j, we can check whether Algo-
rithm 2 has been already computed on vertex i. We only run
Algorithm 2 when it has not been run on i, otherwise we get
the information from the lookup table bottleneck.

We note that the optimized procedure does not improve
our bounds on the asymptotic time complexities outlined in
Sec. V A 3 c. The asymptotic complexities are worst-case
complexities. In the worst case, the EMW between two ver-
tices is always the first edge on the path between the two, in
which case Algorithm 2 needs to be run on every vertex in the
GMWP and optimization cannot be performed. Nevertheless,
the optimization improves the runtime in the average case,
and is useful in practice.

B. Comparison to edge-elimination based
MaxFlux algorithm

1. Explanation and example

Previously, an approximate algorithm has been described
for finding the maximum flux path in continuous space.29–31

The assumption made in those studies is of a narrow tube of
trajectories leading from reactants to products. Here, we con-
sider an exact solution for the maximum flux path on a dis-
crete network. This pathway has been used in the context of
directional milestoning3, 6, 8, 10 and an alternative algorithm for
finding these pathways was proposed in Ref. 6. Here, we call
it the “Edge-Elimination” Maxflux algorithm. The steps in the
algorithm are

1. Sort all the edges in the graph G based on their weight,
into a list, Lw.

2. Initialize path p, between vertices s and t to an empty
path. p on exit will be the GMWP.

3. While the vertices s and t are not connected in p, repeat
the following steps.
a. Proceed to the next edge, (u, v) in Lw with the small-

est weight.
b. Check if removal of (u, v) from G disconnects s from

t.
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i. If it does, then this is an edge that is critical to the
GMWP, and hence it is added to p.

ii. If not, then simply remove this edge from G, and
proceed to the next edge in Lw.

For the example in Figure 6, the sorted edge list is
[(B, D), (C, D), (A, C), (D, F), (E, G), (A, B), (D, E), (F, G)]
and we require the GMWP between A and G. We first con-
sider removing (B, D) and see that A is still connected to G
through 〈A, C, D, E, G〉 so (B, D) is removed. Next, we con-
sider removing (C, D) and see that it disconnects A from G,
and hence we add it to p. Same is the case for (A, C) which
is added to p. We then proceed to (D, F) and notice that its
removal retains connectivity through 〈A, C, D, E, G〉, so (D,
F) is removed from the graph. The next edge is (E, G) whose
removal disconnects A from G, and is hence added to p. Re-
moval of the next edge (A, B) retains connectivity between A
and G, hence the edge is removed from the graph. The next
edge is (D, E) whose removal disconnects A from G, hence
the edge is added to p. At this point, the path p is complete as
A is connected to G in the path, and the algorithm terminates
here, with GMWP 〈A, C, D, E, G〉.

2. Efficiency

Given a graph with E edges and V vertices, the time
for sorting the edges is O(Elog E). Checking if two vertices
are connected in a graph can be done efficiently using graph
traversal algorithms like breadth first search or depth first
search (Cormen et al.40), which take O(V + E), i.e., linear
time if we use a data structure called adjacency list (similar
to the neighbor list) to store the edges of each vertex. If the
graph is represented using a V × V matrix, then breadth first
search or depth first search takes O(V 2) time. The maximum
number of iterations we need is E (one per edge), so the time
complexity becomes O(E log E + EV 2) when using a ma-
trix representation of the graph and O(E log E + E(V + E))
when using the adjacency list representation. Note that the
Elog E factor comes from the complexity of edge sorting
and V 2 or V + E factors come from the breadth first/depth
first traversals to check for connectedness of vertices at each
iteration.

For dense graphs, where E ≈ V 2, both the matrix and
list representations yield a complexity of O(V 4), whereas for
sparse graphs where E ≈ V , the matrix representation takes
O(V 3) while the list representation is faster and takes O(V 2).

C. Comparison to the edge-list bisection algorithm

The approach for determining MWP and GMWP paths
that we discussed is closely related to that of Metzner et al.1

In Ref. 1 the network was based on Transition Path Theory
(TPT) while our approaches use the formulation of Mileston-
ing. The TPT algorithm was used to investigate complex fold-
ing transitions42 and it is as able as the Directional Mileston-
ing approach to pinpoint complex molecular mechanisms and
to provide quantitative kinetic and thermodynamic data. Here,
we call the path algorithm given in Ref. 1 as the Edge-List
Bisection algorithm and describe it below.

1. Explanation and example

The overall approach used to identify Global Maximum
Weight Paths in this algorithm, is identical to the Recursive
Dijkstra’s algorithm for GMWP calculation (Algorithm 3 in
this paper). That means, a bottleneck edge (u, v) is com-
puted between vertices s and t first, and then the path between
〈s. . . u〉 and 〈v . . . t〉 is recursively identified. But the under-
lying algorithm to calculate a bottleneck each time (which in
the Recursive Dijkstra’s algorithm is a modification of the Di-
jkstra’s algorithm) is a variant of the Edge-Elimination algo-
rithm. The following steps describe how the bottleneck edge
between two vertices s and t is selected each time.

1. Sort all the edges in the graph G based on their weight,
into a list, Lw = [e1, e2 . . . .e|E|]. The edges are stored in
ascending order as in the Edge-Elimination algorithm.

2. If the last edge in Lw, e|E| is an edge between s and t,
return the last edge as the bottleneck edge.

3. Go to the edge in the middle of the current sorted list,
em. Let the weight of this edge be wm.

4. (i) If s and t are still connected by removing all edges
with weight less than wm, then the bottleneck edge
has a weight higher than wm. Hence, it is located in
the second half of the edge list between em + 1. . . .e|E|,
which is the part of the edge list we need to explore
next.

(ii) Else if removing edges with weight less than wm re-
sults in s being disconnected from t, then the bottle-
neck has a weight lower than wm and is located in
the first half of the edge list between e1. . . .em.

5. Note that we obtain a sublist to be explored from step 4
and that this sublist is half the size of the original sorted
list. We then repeat steps 3 and 4, exploring the middle
edge of the new sublist and using it to halve the edge
list each time. These steps are repeated till the final edge
list consists of just one edge. This edge is the bottleneck
edge returned by the algorithm.

Unlike the Edge-Elimination algorithm, where we go through
each edge in the edge list one by one, here we traverse the
edge-list in a bisected search manner, bisecting the edge list
till we are left with a single edge. The overall algorithm runs
in an identical manner to the Recursive Dijkstra’s algorithm
in terms of identifying the bottlenecks and reconstructing the
path. So here we will just describe the trace of the algorithm
for finding the first bottleneck in Figure 6.

The sorted edge list for the graph is [(B, D), (C, D), (A,
C), (D, F), (E, G), (A, B), (D, E), (F, G)], out of which we need
the bottleneck edge between A and G. Since the last edge in
the list is not between A and G, we traverse to the middle of
the edge list, which has edge (D, F) of weight 26. Removing
all edges with weight less than 26, we note that A and G get
disconnected. Hence, the bottleneck is in the first part of the
list, i.e., in [(B, D), (C, D), (A, C), (D, F)]. The middle edge
in this list is (C, D) of weight 12. Removing all edges with
weight less than (not less than equal to) 12, we note that the
graph is still connected between A and G. Hence, the list is
further reduced to [(C, D), (A, C), (D, F)]. In the next step, we
note that the middle edge (A, C) has a weight of 25. Removing
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FIG. 7. Visualization of average networks for helix unfolding under a load
level 30 pN in (a) state-space, with 14 anchors (vertices). (b) flux-space with
125 milestones (vertices). The graphs are to illustrate the complexity of anal-
ysis and were prepared with the Pajek program.43

all edges with weight lower than 25 disconnects A from G,
hence we are left with a single edge in our list (C, D), which
is the bottleneck.

In contrast to the previous two algorithms the Edge-List
bisection algorithm makes the following assumptions: (i) the
graph has no edge degeneracy, (ii) the set of all the MWPs
includes all the edges of the graphs, and (iii) there are no cy-
cles in the graph. Assumption (ii) requires, for example, that
the graph does not include dead-end branches. Hence, some
pre-processing of the graphs may be required.

2. Efficiency

As in the Edge-Elimination algorithm, sorting the edges
takes O(Elog E) time for a graph with E edges and V vertices.
To find a single bottleneck edge, the bisected edge list search
examines O(log E) edges. And for each edge, one connec-
tivity test is performed using Breadth-first Search or Depth-
First Search, which takes O(V + E) or O(V 2) depending
on whether the graph representation is in terms of the adja-
cency list or adjacency matrix. Hence, the search for a sin-
gle bottleneck edge takes O(V 2 log E) for the matrix rep-
resentation, and O(Elog E) for the list representation. Since
there are atmost O(V ) edges on the GMWP, the overall al-
gorithm takes O(V 3 log E) for the matrix representation and
O(V E log E) for the list representation. Substituting E ≈ V 2

for dense networks and E ≈ V for sparse networks, the com-
plexity is O(V 3 log V ) for all networks in the matrix repre-
sentation and for dense matrices in the list representation, and
becomes O(V 2 log V ) for sparse networks in the list repre-
sentation.

FIG. 8. Global maximum weight paths using three different graph represen-
tations for helix unfolding under 0pN stress. Bottleneck edges (EMW) are in
red. Note that the second path, represented in anchor space, has a loop to from
alpha3 to alpha2. Directional Milestoning representation allows for such
choices since entry milestones (interfaces) can be different for the same state.
The source of the difference between the state-based and flux-based graph is
the finer (more detailed) description of the system in the flux-based graph.
(a) OpN, Path from state-space graph based on flux-based edge weights;
(b) OpN, Path from flux-space graph based on flux-based edge wights;
(c) OpN, Path from flux-space graph based on rate coefficients.

Note that the paths returned by all three algorithms above
are identical.

VI. RESULTS AND DISCUSSION

We considered two systems to demonstrate the paths: un-
folding of a helix under stress and membrane permeation of
DOPC. Below is a description of the systems and the paths
we obtained in both.

A. Helix unfolding under stress

Alpha helices are prime secondary structure elements
that are found in proteins. Their stability and folding/
unfolding pathways are, therefore, of considerable interest. A
recent study8, 10 simulated a single molecule experiment of a
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FIG. 9. Global maximum weight paths using three different graph repre-
sentations for helix unfolding under 30 pN stress. Bottleneck edges (EMW)
are in red. (a) 30pN, Path from state-space graph based on flux-based edge
weights; (b) 30pN, Path from flux-space graph based on flux-based edge
weights; (c) 30pN, Path from flux-space graph based on rate coefficients.

∼100 amino acid helix, in which both terminals were pulled
by an external force and unfolding events were recorded. For
each of 10 load levels from 0 pN to 100 pN, transition kernels,
K, and milestone lifetimes, τ , were sampled. A probabilistic
model for the transition kernel was developed, which allows
the sampling of the kernel from a model distribution. Over
500 kernel matrices were sampled, providing 500 alternative
networks for each load level. We calculated paths (GMWP)
on the average kernel matrices, lifetimes, and fluxes, averaged
over the 500 samples for each load level.

In this system the number of anchors was 14. The max-
imum possible number of milestones is 14 × (14-1) = 182.
For the different load levels, the number of milestones vis-
ited were 129, 125, and 109 for 0, 30, and 70 pN, respec-
tively. For path calculations, the starting anchor corresponded
to the state alpha3, the fully folded α-helix state, with three
hydrogen bonds wrapping an amino acid. The ending anchor
corresponded to the unfolded state of the helix, in which no
hydrogen bonds are formed and the dihedral angle is in the
extended chain configuration, with psi > 90.

In milestone space, these start and end anchors corre-
sponded to one start milestone and four end milestones, since
there were multiple ways to reach the last anchor (unfolded
state). All paths were converted to state-space or anchor space

FIG. 10. Global maximum weight paths using three different graph repre-
sentations for helix unfolding under 70 pN stress. Bottleneck edges (EMW)
are in red. (a) 70pN, Path from state-space graph based on flux-based edge
weights; (b) 70pN, Path from flux-space graph based on flux-based edge
weights; (c) 70pN, Path from flux-space graph based on rate coefficients.

for visualization. Figure 7 demonstrates the complexity of the
state-space and flux-space networks for the intermediate load
level of 30 pN.

Figures 8–10 depict the global maximum weight path-
ways obtained from the three different graph representations:
state-space graph, flux-space graph with flux-based weights,
and flux-space graph with rate coefficients, for three different
load levels: 0 pN, 30 pN, and 70 pN. Intermediate vertices
on the paths represent partially folded states like alpha2 and
alpha1 with 2 and 1 hydrogen bonds remaining, respectively,
misfolded states like 310, representing the 310 helix, or nearly
unfolded states, like 90 < psi < 0.

When examining the state-based pathways, we notice
that the position of the EMW or the transition state is differ-
ent for different loads. For example, the state-based path for
0 pN path is direct and moves from the three-hydrogen-bond
state to a state with one hydrogen bond and then to a state with
positive backbone dihedral, psi. Finally, the system transitions
to the unfolded state, where no hydrogen bonds are present.
The bottleneck is at the break of the first two hydrogen bonds.
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FIG. 11. Global maximum weight paths using three different graph representations for membrane permeation of DOPC. The path descriptions are as follows:
Path A: Path obtained from the state-space graph with flux-based weights. Path B: obtained from the flux-space graph with flux-based weights. Path C: obtained
from the flux-space graph weighted by local rate coefficients.

A similar path is followed at 30 pN load, with the addition
of one more (unlabeled) intermediate state with no hydrogen
bonds. The dihedral angles of the unlabeled state are still in
the folded region. Interestingly, the bottleneck at 30 pN is dif-
ferent from the 0 pN case, is shifted to a backbone conforma-
tional transition, and is not at the dissociation of a hydrogen
bond. The 70 pN path illustrates another twist in which a new
intermediate hydrogen bond (310) is formed before the system
unfolds. The bottleneck is shifted to the last state in which the
psi dihedral completes the rotation to domains greater than
90◦. This is consistent with the application of additional load,
since the 310 helix is more extended than the α helix and it is
preferred at the high load limit, compared to the random chain
less-extended conformation (the unlabeled state) of the 30 pN
load.

The most complex paths are obtained at intermediate load
level (30 pN). One can understand this by considering the two
limits of low and high loads. At low (zero) loads the system
does not have sufficient energy to explore the energy land-
scape and is restricted to a few dominant and low energy re-
action coordinates. At high load level, the large external force
dominates the energy landscape. The external force washes
out many of the molecular details and induces the system
to unfold in more direct and straightforward pathways. At
the intermediate load level, the external force is sufficient to
reduce the free energy barrier to the extent that new states
can be found and explored but it is not too strong to over-
whelm the features of the energy landscape. This is also con-

sistent with the earlier observation8, 10 that the mean first pas-
sage time through the system is longer for intermediate load
levels.

FIG. 12. Visualization of proximity of paths shown in Figure 11. All the
nodes visited by the three paths are collected into a single network. The po-
sition of the nodes in the network are optimized using force model proposed
in Gephi.46 Connected nodes attract each other, while nodes that are far re-
pel each other. The larger cyan nodes are the initial and final milestones.
The path descriptions are as follows: Path A (green): Path obtained from the
state-space graph with flux-based weights. Path B (red): obtained from the
flux-space graph with flux-based weights. Path C (yellow): obtained from the
flux-space graph weighted by local rate coefficients. This representation em-
phasizes similarities between paths A and B (because they both share several
milestones), and their difference with respect to path C.
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It is also of interest to explore different graph resolutions.
The state-space graph is of the lowest resolution and the paths
from this graph have the lowest level of details. A higher level
of resolution is provided by the milestone-space graph. Mile-
stones are the interfaces between states and obviously there
are more interfaces than states. The milestone representation
is the most natural for the authors to use since it provides an
exact solution for the kinetics, in the framework of the Mile-
stoning theory. The last representation, which is based on rate
coefficients between milestones, is not only more complex but
also approximate. The significant differences from the kinet-
ically exact MaxFlux path suggest that it is mechanistically
incorrect.

B. Membrane permeation of DOPC

Phospholipid membranes such as DOPC efficiently sep-
arate two aqueous solutions and support concentration gradi-
ents of different solutes that are necessary for life processes.
However, the membrane barrier is not absolute and passive
permeation is possible. It is an intriguing question whether ba-
sic ingredients of biological macromolecules (such as amino
acids and sugar molecules) can permeate through membranes
without the active assistance of transporters. Recently, an in-
vestigation was initiated to accurately simulate the perme-
ation of complex molecules through membranes.44, 45 In par-
ticular, the translocation of a blocked tryptophan was simu-
lated with Milestoning. A network was built that takes into
account not only the center of mass of the permeant but also
the orientation of the molecule with respect to the membrane
axis. The number of anchors here was 217 and the number of
milestones was 1204. The start anchor (and milestone) corre-
sponded to the permeant at the left of the membrane and the
end anchor (and milestone) corresponded to the permeant in
solution at the right side of the membrane.

The global maximum weight paths obtained using var-
ious graph representations for this system are shown in
Figure 11. We note that the paths based on fluxes, in both the
flux-space and state-space graphs, are quite similar. But the
path based on local rate coefficients is quite different and sam-
ples a different part of the conformation space. This difference
is emphasized in Figure 12, which is a force-directed graph

(Gephi46) that shows that the paths based on fluxes share sev-
eral milestones, while the path based on rate coefficient is dis-
similar. Similar to the helix unfolding case, the results suggest
that mechanisms extracted from networks based on local ki-
netic information can be different from mechanisms based on
the exact kinetics. Nevertheless, the alternative path based on
local kinetics is found at somewhat lower scoring GMWPs of
flux-based graphs. Hence, it is still a sensible choice with ac-
ceptable weight. We found this path as follows: We remove
the EMW (bottleneck) of the first GMWP and re-compute
the GMWP of the modified graph to yield the next best scor-
ing path. This process is iterated to find a sequence of high
scoring pathways. For dense and degenerate graphs, multiple
pathways of similar scores can be obtained, and this may be
the case also here. All the pathways pass over free energy
barriers of similar absolute heights. The path based on rate
coefficients is less “committed” to the low free energy min-
ima shown in gray on the upper part of the left side of the plot
and the lower part of the right side of the plot in Figure 11.

C. Analysis of runtimes and benchmarks

Table IV summarizes the worst-case time complexities
for dense and sparse graphs for various implementations of
the path algorithms. These factors have been derived in de-
tail, under the Efficiency section of each algorithm. Note that
the Edge-Elimination algorithm shows a marked difference
in complexity between dense and sparse graphs. It is partic-
ularly inefficient for dense graphs and works best for sparse
graphs when the number of edges is small. For dense graphs,
the Recursive Dijkstra’s algorithm shows the most favorable
asymptotic time complexity. The Edge-List Bisection algo-
rithm possesses complexities comparable to that of the Re-
cursive Dijkstra’s algorithm. Generally, state-space graphs are
dense while flux-space graphs are usually sparse.

To obtain a consistent and unbiased measure of the algo-
rithm efficiency in practice, we recorded the runtimes of the
algorithms on random graphs. We generated several sparse
and dense random graphs and runtimes were estimated by av-
eraging the results over different random graphs and differ-
ent start and end nodes. Simple implementations were used
for both algorithms, i.e., graphs were implemented using

TABLE IV. Summary of asymptotic time complexities using various algorithms for dense (E ≈ V 2) and sparse (E ≈ V ) graphs. G: List means the graph
is implemented using adjacency lists, G: Matrix means the graph is implemented using adjacency matrices, Q: Array means the priority queue in Dijkstra’s
algorithm is implemented using arrays and Q: Heap means the priority queue is implemented using Fibonacci heaps. These scaling factors have been derived
in the Efficiency section of each algorithm.

Dense graphs
Recursive Dijkstra Edge-List Bisection Edge Elimination

G: List Q: Heap G: Matrix Q: Array G: List G: Matrix G: List G: Matrix

O(V 3) O(V 3) O(V 3 log V ) O(V 3 log V ) O(V 4) O(V 4)

Sparse graphs
Recursive Dijkstra Edge-List Bisection Edge Elimination

G: List Q: Heap G: Matrix Q: Array G: List G:Matrix G: List G:Matrix
O(V 2 log V ) O(V 3) O(V 2 log V ) O(V 3 log V ) O(V 2) O(V 3)
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TABLE V. Average runtimes in milliseconds for random graphs with 100, 1000, and 10 000 vertices, for the Recursive Dijkstra’s, Edge-List Bisection, and
Edge-Elimination algorithm. Runtimes were calculated on a single core of an 8 core Linux Intel Xeon X5460 processor with clock speed of 3.16 GHz and 16
GB memory shared among 8 cores. Runtimes were not calculated for the Edge-Elimination algorithm for 10 000 vertices since the estimated runtime was too
long. Also shown is the number of edges for each size of random graphs.

Dense graphs
Graph size (nodes) Number of edges Recursive Dijkstra’s Edge-List Bisection Edge Elimination

100 9500 0.31 2.93 258.61
1000 600 000 98.70 404.06 1.56 × 106

10 000 60 000 000 49 045.3 117 248.62 . . .

Sparse graphs
Graph size (nodes) Number of edges Recursive Dijkstra’s Edge-List Bisection Edge Elimination
100 1000 0.23 0.54 13.83
1000 10 000 47.81 36.18 7554.45
10 000 100 000 11 188.2 7228.17 . . .

matrices and queues were implemented using arrays, since
the asymptotic complexity is about the same for the simple
versus the more sophisticated implementations, for the algo-
rithms considered. Table V shows the performance of the al-
gorithms on random graphs. The Edge-Elimination algorithm
is much slower than the other algorithms for all graph sizes,
and its performance degrades significantly when transitioning
from sparse to dense networks. The Recursive Dijkstra’s algo-
rithm, on the other hand, requires approximately the same or-
der of magnitude of runtimes in both dense and sparse cases.
The runtimes of the Edge-list Bisection algorithm are compa-
rable to that of the Recursive Dijkstra’s algorithm. We note
that the Edge-List Bisection algorithm is most efficient for
sparse graphs while the Recursive Dijkstra algorithm is most
efficient for dense graphs.

We see that though the worst-case complexities of the
algorithms are not very different, there is a wide difference
in runtimes on the benchmark. Let us consider, for example,
the asymptotic complexities of the algorithms in Table IV
for sparse graphs using matrix representations of graph.
For the Edge-Elimination algorithm, one needs to traverse
through the list of sorted edges, checking for each edge, if
its removal disconnects the two end vertices (an operation
that takes O(V 2) in this case), terminating only when the set
of edges on the path is complete. In practice, this leads to
a large number of edges being explored before we recover
the complete path. So the average time complexity is closer
to the worst-case time complexity for the Edge-Elimination
algorithm.

In contrast, for the Recursive Dijkstra’s algorithm and the
Edge-list Bisection algorithm, we run the underlying bottle-
neck identification algorithms (which are the modified Dijk-
stra’s algorithm which takes O(V 2), or the bisection-based al-
gorithm which takes O(V 2 log V ), respectively, in this case)
only once per edge in the global maximum weight path. This
means we only need to run these underlying bottleneck identi-
fication algorithms, Ep times, where Ep is the number of edges
on the global maximum weight path. In practice, Ep can be
far less than the number of vertices, which in turn is much
less than the number of edges. Hence, the average runtime for
these algorithms can be much smaller than the time predicted
by the asymptotic analysis and is smaller than the time taken
by Edge-Elimination.

VII. CONCLUSIONS

In the present paper we discussed different network rep-
resentations for molecular kinetics and the qualitative analy-
sis of these networks. Network representations are emerging
from a number of enhanced sampling techniques for molecu-
lar kinetics using methods like Milestoning, TPT, MSM, and
more. The push to longer time scales is obtained by calcula-
tion of local kinetic information by MD (e.g., local rate co-
efficients) and using the data in coarser equations such as
Master Equation or Milestoning. Networks offer a natural
way for coarse-graining without losing too much in spatial
resolution, while being able to push temporal scales to signif-
icantly longer domains (from nanoseconds to hours45). We ex-
pect the use of networks as well as the complexity of the net-
works (number of edges and vertices) to increase significantly
in the future. This increase in network complexity is neces-
sary to capture more details of chemical processes, allowing
for the interactions of multiple coarse variables and going
beyond one-dimensional reaction coordinates. However, the
complexity of networks makes them harder to interpret and
obtain qualitative insight, compared to lower dimensionality
modeling. To obtain such qualitative interpretation, we iden-
tify in the network, dominant edges and paths that carry sig-
nificant fluxes or trajectories and hence are more important
than others. Maximum flux or global maximum weight path-
ways are discussed at length in the present paper as a natural
choice for these analyses. Recursive Dijkstra’s and Edge-List
Bisection algorithms are proposed as efficient and scalable
approaches to identify them. We also discussed the interpre-
tation of molecular mechanisms using networks for analysis.
We argue that using local kinetic information (such as rate
coefficients) instead of exact solution of the kinetic equations
may lead to incorrect dominant pathways.

Code for calculating optimal pathways in networks is
available as part of the analysis module of the molecu-
lar dynamics program MOIL.47 It can be downloaded from
http://clsb.ices.utexas.edu/web/moil.html
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APPENDIX: DEFINITIONS OF TERMS

The following is a list of definitions occurring in this pa-
per. Alternate terms for the same concept are given in brack-
ets.

1. Graph (Network) G: Coarse-grained representation of
the system defined by a set of nodes and directed edges
connecting the nodes.

2. Node (Vertex) V: Discrete regions in the network con-
nected by edges. These may represent volumes of phase
space or milestones.

3. Edge E: A directed connection between two nodes in a
graph. Directionality implies that an edge from vertex p
to vertex q is not the same as an edge from vertex q to
vertex p.

4. Edge weight (capacity) w: A real number associated
with every edge. It may represent different physical
quantities, e.g., flux, distance between vertices, or rates
of transition between vertices.

5. Distance d: The distance between two vertices, used to
optimize path length. Serves in the same capacity as
edge weight.

6. State-space graph (anchor-space graph): Graph with
nodes as anchors or regions in phase space, and edges
as transitions between anchors.

7. Flux-space graph (milestone-space graph): Graph with
nodes as milestones or interfaces, and edges as transi-
tions between milestones.

8. Start and end vertex (Emitting and absorbing states) s
and t: In a chemical context those are the reactant and
product state of the system, respectively.

9. Path: Series of connected edges in a graph leading from
the start vertex to the end vertex.

10. Path Length L: Sum of all distances along a path. A
scalar function used in the optimization of path length
between vertices.

11. Maximum weight path (Maximum capacity path, Dom-
inant Reaction Pathway) M: Among all possible paths
between a pair of vertices, it is the path with the max-
imum possible weight on the edge with the smallest
weight on the path. It is not unique for a pair of vertices.

12. EMW (Bottleneck, maximum capacity): The edge with
the lowest weight on a path. It is the bottleneck on the
path and is also the maximum capacity that the path al-
lows.

13. Global maximum weight path (Maxflux path, Represen-
tative Dominant Reaction Pathway): It is a special max-
imum weight path between a pair of vertices. It is a
maximum weight path where any subpath between any
pair of vertices on the path is also a maximum weight
path for that vertex pair. For a given pair of vertices, it

is unique up to the degeneracy of edge weights in the
graph. When fluxes are edge weights, this path is the
same as the Maxflux path.
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