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INTRODUCTION

Detailed structural characterization of protein–protein
interactions at the atomic level is essential for deducing

details of protein function, protein engineering, and for
structure-based drug design. Proteins carry out functions

by interacting with other proteins and the details of their
complex formation can be instrumental in understanding
cellular processes at the molecular level. Besides, struc-

tures of protein–protein interfaces can be engineered to
alter the specificity or strength of binding, and atomic

details of how two proteins bind provide a basis for
designing small molecules (drugs) that can inhibit the

binding and impact the pathway for the cellular process
that the two proteins are involved in.1,2

Structural characterization of protein complexes is

harder to obtain experimentally than the tertiary struc-

tures of the individual proteins. Therefore, computational

methods for docking protein pairs can be a useful

approach when experimental structures are not available.

Computational modeling of protein complexes generally

consists of two steps: an initial global search in six

dimensional space for an optimally docked configuration

(keeping the structures of the individual proteins fixed),

and a refinement step in a subspace obtained from the

results for the initial search.3 Different algorithms have

been used for the global search, such as Fast-Fourier

Transforms4–7 which are by far the most popular,

Monte-Carlo searches using a coarse-grained representa-

tion of proteins,8,9 and geometric hashing.10 The scor-

ing functions used to guide the rigid docking search

include shape matching,5,7 statistical potentials meas-

uring amino acid affinities,5,7 and physical energy terms

such as van der Waals and electrostatic interactions.3
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ABSTRACT

An atomically detailed potential for docking pairs of proteins is derived using mathematical programming. A refinement

algorithm that builds atomically detailed models of the complex and combines coarse grained and atomic scoring is intro-

duced. The refinement step consists of remodeling the interface side chains of the top scoring decoys from rigid docking fol-

lowed by a short energy minimization. The refined models are then re-ranked using a combination of coarse grained and

atomic potentials. The docking algorithm including the refinement and re-ranking, is compared favorably to other leading

docking packages like ZDOCK, Cluspro, and PATCHDOCK, on the ZLAB 3.0 Benchmark and a test set of 30 novel com-

plexes. A detailed analysis shows that coarse grained potentials perform better than atomic potentials for realistic unbound

docking (where the exact structures of the individual bound proteins are unknown), probably because atomic potentials are

more sensitive to local errors. Nevertheless, the atomic potential captures a different signal from the residue potential and as

a result a combination of the two scores provides a significantly better prediction than each of the approaches alone.
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The second step usually adjusts the rigid docking struc-

tures obtained in the first step and re-ranks them using

fine-grained energy terms. RosettaDock uses an iterative

Monte-Carlo search starting from rigid docking structures,

first rebuilding side-chains of existing structures, and then

minimizing the rigid structure of the two proteins using an

elaborate energy term, the Rosetta potential.1,9,11 Monte-

Carlo approaches have also been used by others to incor-

porate rigid-body and side chain movements in refining

docked conformations.12 Weng and coworkers developed

RDOCK,13 a refinement algorithm which uses energy

minimization and re-ranks models with a combination of

electrostatics and knowledge-based potentials representing

desolvation. They later developed a faster algorithm for the

second step, ZRANK,14 that is a linear combination of a

knowledge-based atomic potential, ACE, with electrostatic

and van der Waals terms.

Wolfson and coworkers developed the refinement algo-

rithms, FIREDOCK,15 which incorporates restricted side-

chain flexibility and orientation adjustments and its

improved version, FIBERDOCK,16 which incorporates

backbone flexibility using normal modes in addition to

side-chain flexibility. GRAMM-X uses conjugate gradient

minimization with a smoothed Lennard-Jones type

potential and ranks the models with a scoring function

that is a combination of residue-based and atom-based

terms.4 The Cluspro team developed a refinement

method using Monte-Carlo runs with semi-definite pro-

gramming with underestimation (SDU).6,17 Recio and

coworkers use hydrogen-bond optimization along with

energy minimization of all-atom force-fields in order to

refine docking poses.18 Zhou and coworkers perform a

short minimization and restricted re-sampling near exist-

ing models followed by re-ranking using DFIRE and

EMPIRE energy functions.19

Most of the methods so far address the case in which

the constituents do not undergo drastic conformational

changes in the complex compared to the unbound state.

Indeed, in an analysis of complexes in ZLAB benchmark

3.0, it has been found that the root mean square devia-

tion (RMSD) of the ligand between the bound and

unbound structures varies from 0.2 to 8 Å, with half of

the complexes having an RMSD less than 1 Å2.20 This

also corresponds to our analysis of 178 unbound com-

plexes in our learning set, where we find the average TM

scores (Template Modeling32 scores) between the

unbound and bound chains to be 0.8953 and 0.8875 for

the receptor and ligand, respectively. In our work too, we

consider cases in which no large-scale movements take

place in the individual constituents.

This article describes an algorithm for the step of refine-

ment and re-ranking. The input to this step is complexes

obtained from our rigid docking package, DOCK/PIE.5

We name the new program DOCK/PIERR, for DOCK/

PIE-RefineRerank. It is based on rigid docking followed by

side chain remodeling and minimization. These adjusted

structures are re-ranked with a newly developed atomic

potential and a previously developed residue potential.5

We first model the side chains of interface residues from

the top 1000 structures from rigid docking, using the pro-

gram SCWRL.21 In an analysis of the ZLAB Benchmark

3.020 set it is observed that interface residues undergo the

maximum change in conformation upon docking, and

most of these changes bring the interface residues from

high-energy to low-energy torsion angles.22 After model-

ing side-chains of the structures, we minimize them with

the molecular dynamics program MOIL23 using the OPLS

force field.24 The minimization helps to reduce interface

clashes in the model. Finally, we re-rank the refined models

using a combination of the new atomic and residue poten-

tials. It has been shown that refining structures before re-

ranking improves the recognition of near-native structures.

Also, an optimized combination of atomic and residue

potentials result in an improved discrimination as noted

by others previously.25–27 The details are described in the

Methods section below.

METHODS

Learning and test sets

For optimizing the parameters of the new atomic

potential, we used a learning set of 640 complexes used

in previous studies,5,28 which contains 462 bound, and

178 unbound complexes. The new methods were tested

on three datasets. The first dataset comprises of 124 com-

plexes from the ZLAB Benchmark 3.0,20 a standard

benchmark test set used by the protein–protein docking

community. The second dataset comprises of 640 targets

from our learning set. The third dataset is a set of 30

complexes that is independent from the learning set, and

details of this dataset are available in the Results section.

Rigid docking

Given the chains of the receptor and ligand molecules,

we used our previously developed docking package

DOCK/PIE,5 to generate a training set for refinement.

We retain top scoring 219 5 524,288 fast fourier trans-

form (FFT)-based transformations for each complex.

These transformations are then clustered in rigid body

space and scored using the potential, PIE,5 which con-

sists of a pairwise residue contact term along with van

der Waals attraction and repulsion terms. Subsequently,

the top scoring transformations are filtered for clashes,

and clustered again using interface RMSD.

Side chain refinement

We chose the top 1000 models from DOCK/PIE rigid

docking, ranked by DOCK/PIE, for each pair of proteins

in the training set to refine and re-rank. The number of

models must be large enough to include a near-native
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model, and small enough to make the (more expensive)

refinement process efficient. Our choice of the number of

models was based on an examination of CAPRI targets. In

our CAPRI dataset, 19 of 22 targets had near-native mod-

els (acceptable by CAPRI definition) in the top 1000, while

the number dropped to 16 considering the top 500 mod-

els. Out of the remaining three targets that did not have

near-native models in the top 1000, one target had a near-

native model at position 3500, and the other two did not

have any near-natives in the output after clustering. The

choice of 1000 candidates therefore seems reasonable.

In order to reduce the number of clashes, make the rigid

docking poses chemically sound, and improve the energies

(scores) of the models, we first performed side-chain refine-

ment using SCWRL4.21 SCWRL is a side-chain prediction

program that uses graph-based decomposition to identify

the set of optimal rotamers for the side chains of a given

model. We used a cutoff distance of 6 Å between the two pro-

teins to identify interface residues in the top 1000 models for

each target (complex). We then modeled the side chains of

only those interface residues using SCWRL.

Minimization

After side chain refinement, clashes are removed by 100

steps of conjugate gradient energy minimization. The mini-

mization was performed using the routine mini_pwl (con-

jugate gradient descent with Powell restart) of the molecular

dynamics package MOIL23 and the embedded OPLS-AA

energy function. During the minimization, the receptor and

ligand molecules are modeled as rigid bodies. Minimization

both in vacuum and using implicit solvent models (GBSA)

was performed. However, no noticeable difference in the

results was observed between the two procedures (the struc-

tural adjustments were small: there was a change in the

RMSD to the native structure by only �0.05 Å RMSD after

refinement). Therefore, we decided to use minimization in

vacuum since it is more efficient. Overall, the refined struc-

tures are not more similar to the X-ray structures compared

to the unrefined complexes, and distance of the refined

structure in terms of RMSD from the initial structure is mi-

nute (�0.2–0.4 Å). The refinement is nevertheless useful

since it allows for better ranking.

Atomic potential

We designed a distance-dependent pairwise atomic poten-

tial to re-rank the top 1000 refined structures. Using the

atomic potential on the refined structures, we expect to gen-

erate more hits in the top 10 (or top 1) than the rigid docking

procedure alone. The parameters for the atomic potential

were learnt using mathematical programming from the top

1000 refined models (refined as described by the procedure

described above) of each complex in our learning set.

The heavy atoms were collected into 32 types, as

reported earlier for threading potentials.29 We employed

three distance bins: 2–3.5 Å, 3.5–5 Å, and 5–8 Å, which

is the same as used in Ref. 29 to recognize approximate

structures for threading/homology modeling.

Knowledge-based pairwise atomic potentials are fre-

quently modeled by a square-well potential, that is they

designate a single value, u(i,j,d) for a distance range, d,

and atom-type pair (i,j). For clarity, we replace the pair

of interaction (i,j) by a single index a of the interaction

type. If an atom of type i is found within a distance d

from an atom of type j, then the value u(a,d) is added

to the energy of the structure. The energy or score, E(X)

of a complex X, with a receptor A and ligand B, is a sum

of all pairwise interactions between atoms i and j in A

and B respectively, and is given by

EðXÞ ¼
X
a;d

nða; dÞuða; dÞ ð1Þ

where nða; dÞ is the number of interactions of type a

(i.e., we use a single index to describe the interaction of

particles i and j) at distance d. We found that a better

accuracy was obtained when a continuous function is

used between bins rather than steps. We use a linear

interpolation between the bins, as shown in Figure 1.

The corresponding equations for the geometrical

factor, n(a,d) are given in Eq. (2)

where rab is the distance between an atom pair (i,j)

where i belongs to protein A and j belongs to protein B.

nða; 1Þ ¼ 1:0 2 Å � rab < 3 Å

nða; 1Þ ¼ 4:0 � rab

nða; 2Þ ¼ rab � 3:0

� �
3 Å � rab < 4 Å

nða; 2Þ ¼ 1:0 4 Å � rab < 4:5 Å
nða; 2Þ ¼ 4:0 � rab

3:0
nða; 3Þ ¼ rab

3:0 � 3:0

� �
4:5 Å � rab < 6 Å

nða; 3Þ ¼ 1:0 6 Å � rab < 8 Å

ð2Þ

Note that the values of n a; ið Þ are fixed by the coordi-

nates of the atoms in the structure. For every distance

bin, (i 5 1,2,3) we identify a different multiplicative

energy term u a; ið Þ.

Constraints used for learning

The formulation above led to p 5 1584 5
32ð32þ1Þ3

2

parameters for the potential. We learn these parameters

taking into account known correctly and incorrectly

docked structures. The energies of correct and incorrect

pairs are used to create inequalities (correctly

docked pairs must have lower energies) of the type

Eincorrect � Ecorrect> 0. The values of the parameters were

obtained by solving the inequalities by linear program-

ming using the LP solver, PF3.30 More specifically the

following types of inequalities are used:

(a) Inequalities comparing near-native and misdocked

models
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Of the top 1000 models for each complex, we define

‘‘near-native’’ as models having an interface RMSD less

than 2.5 Å to the native PDB structure. We call confor-

mations ‘‘misdocked’’ if they have an interface RMSD

greater than 7 Å. We added the native structure to the

set of near-natives for each target in our learning set. We

then require that for each target, the atomic potential

have a lower (better) energy for near-native models than

for misdocked models.

EðXmisdocked � Xnear-nativeÞ > 0 ð3Þ

The above inequalities are linear in their parameters,

which make them accessible to efficient calculations. We

rewrite Eq. (3) in terms of Eq. (1).

X
a;d

uða; dÞ½nmisdockedða; dÞ� �
X
a;d

uða; dÞ½nnear-nativeða; dÞ� > 0

X
a;d

uða; dÞ½nmisdockedða; dÞ � nnear-nativeða; dÞ� > 0 ð4Þ

Equation (4) illustrates that the inequalities are linear in

the parameters u(a,d). Hence, the inequalities can be

solved efficiently by mathematical programming.

In Eq. (4) the solution for the parameter set is up to

a multiplicative positive constant k. Hence, if u a; dð Þ is a

solution so is ku a; dð Þ. It is therefore convenient to put

the right hand side of the equation to 1 instead of zero.

This choice sets a scale for the parameter values and

makes the numerical calculation easier.

Furthermore, we also allow for some errors in our solu-

tions. It is not possible to satisfy all the inequalities because

the functional form is not known exactly, and its current

form is not flexible enough to solve all the constraints. On

the other hand, making the functional form more complex

may lead to the phenomenon of over-learning. In over-

learning, the new scoring function performs better on the

training set than on new targets. New targets are obviously

of more interest in practical applications and we aim for

comparable performance on the training set and other tar-

gets. Therefore we remain with the simpler functional form

while accepting some mis-classification.

Figure 1
Examples of atomic potentials u(a,d) for six different pairs of atom types. A: NX (Lyz-NZ) and CO (carbon of backbone carbonyl). B: SM (MET-

Sulfur) and OC (oxygen of carbonyl groups). C: NDHS (TRP-NE1) and CH3 (terminal aliphatic side chain carbon). D: CH2 (beta carbon) and

CFH (aromatic side chain carbon). E: OX1 (ASP-OD1, OD2, GLU-OE1, OE2) and CO (carbonyl carbon). F: NH (amide nitrogen) and CAH

(alpha carbon of amino acids). More details on atom types are given in Ref. 29. The three distance bins, 2–3.5 Å, 3.5–5 Å, and 5–8 Å have one

single parameter value in the regions in the middle of the distance bins. The outer one-third portion of the distance bins adjacent to neighboring

bins is modeled by a straight-line interpolation between the bins.
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The existence of mis-classifications is further ampli-

fied by the use of near-native structures as ‘‘correct’’

structures, instead of actual native complexes, and dock-

ing of unbound structures instead of bound structures of

the individual chains in the complex. A near-native

structure as a target and the use of unbound chains

mimics better the conditions of an actual prediction.

However, it also increases the noise level and introduces

uncertainties to the classification. Rather than the strict

constraint, we add to each inequality i a slack variable zi.

Equation (3) then becomes:

EðXmisdocked � Xnear-nativeÞ > 1 � zi

zi > 0
ð5Þ

(b) Inequalities comparing high-quality hits and good

hits

We found it beneficial to add inequalities comparing

near-native structures with interface RMSD less than 1.5

Å compared to the native complex (call it high-quality

hits) and hits with interface RMSD between 1.5 and 2.5

Å (known as good hits). The value of the cutoff 1.5 Å

was obtained based on statistics of hits in the targets of

the learning set. It was chosen such that there was an

even distribution of models in the high-quality and good

hit categories and the number of additional inequalities

was maximized, as shown in Table I. The new inequal-

ities require that the high-quality hits will have lower

energies than good hits.

EðXgood hit � Xhq hitÞ > 1 � zi ð6Þ

(c) Inequalities comparing pairwise adjacent hits

We also sorted the hits (models with iRMSD less

than 2.5 Å) by iRMSD, and formulated inequalities com-

paring energies of neighboring hits. For example, model i

has lower iRMSD than model i11. Therefore, we expect

the energy of the ith model to be lower than the energy

of the model ranked i11 in the list. Here nhits is the total

number of hits for a target in the learning set.

EðXhit
iþ1 � Xhit

iÞ > 1 � zi ; i¼ 1; 2::nhits � 1 ð7Þ

Using these three types of inequalities, we had a total

of 5,841,395 inequalities in our learning set. The com-

plete set of constraints is now combined with an objec-

tive function that was minimized. The objective function

is the sum of the parameters, uða; dÞ and slack variables,

z, where g is an empirical constant that provides weight

to the violations of the constraints relative to precise

determination of the parameters.

min
X
a;d

uða; dÞ
�����

�����
1

þg
X
i

zi

�����
�����

1

ð8Þ

Using PF3,30 we solved 92.8% of the inequalities. We

call the atomic potential PISA [Protein Interactions Scored

Atomically] henceforth. We used the value of 1.0 for g.

For each of the complexes in the learning set we men-

tioned previously, we used one thousand refined models

along with the native structure for the complex to generate

the three kinds of inequalities discussed above. For 67 of

the complexes in the learning set (58 bound and 9

unbound), one or more backbone atoms in the PDB files

were missing. The missing atoms prevent us from placing

side chains or minimize continuous atomic energy using

MOIL.23 We attempted to add missing backbone atoms

to the complexes using Modeller.31 However, Modeller

tends to move the modeled structure away from the tem-

plate. We found that the results obtained by learning based

on Modeller structures were worse than the results

obtained by simply using the unrefined (rigid-docking)

models for complexes with missing atoms, as shown in

Table II. So for these complexes, we use the unrefined

models for learning and testing.

Combining atomic and residue scores
for re-ranking

We observed that though the atomic potential PISA

obtained above recognizes more hits in the top 100 than

Table I
Statistics of Hits in the Learning Set

High-quality
hit cutoff (hc)
in �

Number of high
quality hits

(iRMSD < hc)

Number of good
hits (hc < iRMSD

< 2.5 �)

Number of
resulting

inequalities

1.0 993 5416 40,860
1.5 2341 4068 86,930
2.0 4156 2253 79,535

See text for more details.

Table II
Performance With and Without Modeller on 67 Targets of the Learning Set

Refinement method for 67 targets
Number of hits
in top 10/top 1

Number of targets
solved in top 10/top 1

Modeller for modeling missing atoms, followed by SCWRL and minimization 81/15 38/15
Using unrefined decoys in case of missing main chain atoms 86/17 40/17

A hit here is a model with an interface RMSD of 4 Å or lower to the native structure. Note that the ranking of unrefined structures is slightly better than the refined

structures. However, the refined models have more sound chemical geometries.
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the previously developed residue based potential, PIE,5 it

is not sensitive enough to recognize more hits in the top

10, or top 1. The reason for the lower performance of the

atomic potential at the high end of prediction may be the

more significant sensitivity of atomic interactions to struc-

tural details compared to interactions at the residue level.

This sensitivity of the algorithm is amplified by the use of

unbound (approximate) complexes rather than just bound

complexes with atomically precise interactions.

Realizing that the atomic and residue potentials encap-

sulate different signals (atomic potential captures shorter

range interactions), we decided to combine the two,

expecting the combined method to work better than the

residue or atomic potentials alone. We used the following

combination of potentials.

Product

For the atomic potential, PISA, the lower the energy, the

better the model. Whereas for the residue score, PIE, higher

the score, the better the model. Hence if we take the prod-

uct of the scores of PISA and PIE for each model, the lower

the score of the product, the better the model should be.

C1 ¼ PISA 3 PIE ð9Þ

Linear combination

The second combination potential consisted of a

weighted linear combination of the atomic and residue

potentials.

C2 ¼ PISA þ a:PIE ð10Þ

The value of coefficient a was set to 20.2 by learning

on the learning set.

Linear combination with product

We also developed another combination potential

adding the individual values of the atomic and residue

potentials to their product.

C3 ¼ c:PISA þ d:PIE þ PISA 3 PIE ð11Þ

The values of the coefficients, c and d, were found to

be 0.1 and 20.8, respectively, as shown in Figure 2.

Tests on other docking packages

We compared our results to the ZDOCK,7

ZDOCK1ZRANK,14 CLUSPRO,17 and PATCH-

DOCK1FIBERDOCK16 methods. For ZDOCK results

on the ZLAB dataset, we used the latest version ZDOCK-

3.0.2 with six degree Euler angle sampling and the results

(RMSDs) as reported in the ZLAB website. For the other

test sets, we used the downloaded packages for ZDOCK

version 3.0.2 and ZRANK. For ZDOCK1ZRANK, we

used the top 2000 conformations from ZDOCK as rec-

ommended.14 We then added polar hydrogens to the

models using SCWRL421 and re-ranked the models using

ZRANK. For CLUSPRO, we used the results from the

CLUSPRO server17 which runs CLUSPRO version 2.0.

We used the downloaded packages for PATCHDOCK and

FIBERDOCK. FIBERDOCK is shown to be an improved

refinement and re-ranking method over the same group’s

FIREDOCK. We used the top 500 models from PATCH-

DOCK as suggested16 and refined the backbone and side

chains of the models using FIBERDOCK, and re-ranked

models with the FIBERDOCK energy term. The packages

ZDOCK and CLUSPRO perform only rigid docking and

no refinement or rescoring, and are meant to enrich the

number of hits in the top 1000 or 2000 structures. For

ZDOCK we therefore compared also the enrichment

factor. The server for CLUSPRO reports only the top

10 models, and hence we did not compare the enrich-

ment factor for CLUSPRO. It is interesting to note

that ZDOCK in our hands scores better than

ZDOCK1ZRANK.

RESULTS AND DISCUSSION

Creation of test sets

We tested DOCK/PIERR (pronounced DOCK-by-

PIER), our proposed method of docking using DOCK/

PIE followed by refinement and re-ranking, on three

datasets. The first dataset comprises 124 complexes from

the ZLAB Benchmark 3.0.20 The second dataset com-

Figure 2
Contour plot showing parameter search for values of coefficients c and

d in Eq. (11). The height represents the number of targets in the
learning set with a hit with interface RMSD less than 4 Å in the top 10,

for the combination of coefficients of the potential C3. The best values

appear to be 0.1 for c, the atomic potential weight and 20.8 for d, the

residue potential weight.
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prises 640 targets from our learning set, described in the

Methods section and used in previous work.28

The third dataset is a set of 30 complexes that is inde-

pendent from the learning set. These are a set of com-

plexes that were deposited in the Protein Data Bank after

September 22, 2010. To construct this test set, we queried

the Protein Data Bank for soluble two-chain protein–

protein complexes, with no DNA, RNA, and free ligands

in the structure. We discarded complexes with modified

residues, and chains that were shorter than 50 residues in

length. The query resulted in 126 complexes.

We then tested to see whether these complexes were

similar to any of the complexes in the learning set. We

used TM-Align32 on the individual chains of the bound

complex and discarded all complexes where both chains

had a TM score of 0.5 or higher with the chains of a tar-

get in the learning set. Forty-five of the complexes were

not similar to any in the learning set. To perform

unbound–unbound docking, we searched for homologs

for the individual chains of these 45 complexes using

PSI-BLAST.33 We discarded the complexes with no

homologs (BLAST expectation cutoff of 1023) for either

chain.

Then we constructed a homology model for each

chain, using the structure of the homolog and the

sequence of the chain from the bound complex. We used

MODELLER34 to build the homology model and dis-

carded complexes where the homology models had a TM

score of less than 0.8 with the chain in the bound com-

plex. We obtained a set of 30 complexes from this proce-

dure, with 22 having both chains unbound and 8 with

one chain unbound. Table III contains the list of homo-

logs used for the unbound docking of novel complexes.

Results on the ZLAB benchmark

In the following tables, we analyze the results by two

metrics: interface RMSD and fraction of native contacts,

as defined by the CAPRI assessment.35 A hit defined in

terms of interface RMSD, is a model with interface

RMSD less than 4 Å, to the crystal structure of the com-

plex, which is equivalent to an ‘‘acceptable’’ model in the

CAPRI assessment. Similarly, a hit in terms of fraction of

native contacts is a model with 10 percent or more native

contacts, which is one of the criteria for an acceptable

model in CAPRI.

We show in Table IV, the comparison of our docking

software with ZDOCK, ZDOCK1ZRANK, CLUSPRO,

and PATCHDOCK1FIBERDOCK. We compare the per-

formance of DOCK/PIE our rigid docking package with

the new DOCK/PIERR, which is DOCK/PIE with side

chain remodeling, energy minimization, and re-ranking.

Re-ranking is done in various ways, using the atomic

potential PISA alone, or the combination potentials, C1,

C2, and C3, composed of the atomic and residue

potentials.

We note that DOCK/PIERR with C1 and C2 combina-

tion potentials performs better than the other DOCK/PIE

versions. It is interesting to note that ZDOCK performs

better than ZDOCK1ZRANK in terms of number of

interface RMSD hits. DOCK/PIERR picks a smaller num-

ber of hits than ZDOCK or ZDOCK1ZRANK in the top

10. However, DOCK/PIERR and its various versions are

able to solve more targets than ZDOCK. ZDOCK is able

to generate a lot of reasonable models for some targets.

However, for some targets it does not generate hits at all.

DOCK/PIERR is more uniform in the generation of hits.

Further discussion on enrichment versus ranking can be

found in the next section on the novel set. CLUSPRO is

one of the best methods, even though we include the

results from the web server only, which does not include

the more expensive refinement procedure.

Results on the novel test set

We also compared DOCK/PIE and DOCK/PIERR ver-

sions with other leading docking software on the dataset

of 30 novel complexes, constructed as described earlier.

This is shown in Table V. For ZRANK, the authors

Table III
List of Complexes in the Novel Test Set of 30 Targets Along With the

Corresponding Homologs Used to Model the Unbound Receptor and

Ligand for Each Complex

Target
PDB ID

Receptor
homolog (PDB_chain):
target receptor chain

Ligand homolog
(PDB_chain):

target ligand chain

2xt4 2XT2_A:B 2XT2_A:A
2xty 2XTW_A:B 2XTW_A:A
3agx 3AGZ_A:A 3AGZ_A:B
3asy 1XRJ_A:A 1XRJ_A:B
3gt6 3GLA_A:A 3GLA_A:B
3lis 3LFP_A:A 3LFP_A:B
3m7f 3B7Y_A:B 1NRV_A:A
3mxj 3MXI_B:B 3MXI_B:A
3nfy 1T8P_A:B 1T8P_A:A
3oa9 3D6R_B:A 3D6R_B:B
3p2q 3KV7_A:A 3KV7_A:B
3pc6 3PC8_A:B 3PC8_A:A
3pge 3PGE_A:A 3L0W_A:B
3pra 3PRB_A:B 3PRB_A:A
3r8c 3R20_A:A 3R20_A:B
3rd6 3Q64_A:A 3Q64_A:B
3rkc 3HAG_A:B 3HAG_A:A
3t43 3LF6_A:A 3LF6_A:B
3te8 3LR5_A:B 3LR5_A:A
3u80 2UYG_A:A 2UYG_A:B
3umz 3UN0_B:A 3UN0_B:B
3vc8 3VCB_A:B 3VCB_A:A
2wfx 3HO4_B:B 2IBG_H:A
3d65 3D65_E:E 3BTM_I:I
3di3 3DI3_B:B 3DI2_C:A
3hct 1FXT_A:B 3HCT_A:A
3jrq 2IQ1_A:A 3JRQ_B:B
3l1z 3FSH_B:A 3L1Z_B:B
3m18 3M18_A:A 1I56_A:B
3nbp 1MU2_A:A 3NBP_B:B
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recommend it to be used on the top 2000 models from

ZDOCK. Besides applying ZRANK on the top 2000 mod-

els, we also applied ZRANK to the top 1000 models from

ZDOCK, since we use the top 1000 models from our

rigid docking procedure for re-ranking. We did similarly

for FIBERDOCK, which is to be applied on the top 500

models from PATCHDOCK. CLUSPRO and ZDOCK

have not been used so far for docking of homology mod-

els. But here we are using homology modeling to mimic

a ‘‘real’’ docking experiment in which the bound struc-

tures are not known. The refinement to atomic structures

ensures chemically reasonable conformation, but not bet-

ter ranking (see also Table II).

Table VI shows the comparison of different docking

methods on individual targets in the novel set. We see that

targets that are hard for DOCK/PIE are generally also hard

for the other docking packages. But there are some targets

like 3asy, 3r8c, and 3rd6, where the only software that was

able to produce a hit in the top 10 was DOCK/PIE (RR).

For 3hct, only ZDOCK1ZRANK was able to produce a

hit. For 3d65 and 3nbp only CLUSPRO was able to pro-

duce a hit in the top 1. Figure 3 shows some of the models

produced by different methods on the novel set.

On the novel set, DOCK/PIE with the residue potential

seems to perform better than DOCK/PIERR with the

atomic potential. DOCK/PIE rigid docking and DOCK/

PIERR with potential C3 performs better than all other

docking methods. Again, performance of ZDOCK is

superior to ZDOCK1ZRANK. Also, ZRANK applied to

top 1000 models seems to be better than the authors’

recommendations of applying it on the top 2000 models.

For FIBERDOCK, the author recommendation of apply-

ing it on the top 500 models seems to work better.

We also compared the enrichment capacity of our rigid

docking procedure, DOCK/PIE with that of ZDOCK on

the novel set. By enrichment capacity, we mean the num-

ber of hits (with interface RMSD less than 4 Å) returned

by each rigid docking program in the top 1000 models.

Table VII shows that DOCK/PIE enrichment is slightly

better than ZDOCK. Analogous results for CLUSPRO

were not available since we used the CLUSPRO server

that returns only the top 10 models for each target.

Table V
Comparison of Docking Software on the Novel Set of 30 Targets

Method

Interface RMSD Fraction of native contacts

Number of hits
in top 10/top 1

Number of targets
solved in top 10/top 1

Number of hits
in top 10/top 1

Number of targets
solved in top 10/top 1

DOCK/PIE Rigid Docking 37/10 16/10 69/14 20/14
DOCK/PIERR Re-rank with PISA 33/7 12/7 50/10 17/10
DOCK/PIERR Re-rank with C1 41/7 15/7 70/11 21/11
DOCK/PIERR Re-rank with C2 43/9 17/9 75/12 21/12
DOCK/PIERR Re-rank with C3 44/10 17/10 72/12 22/12
ZDOCK 39/9 11/9 52/11 14/11
ZDOCK1ZRANK-2000 34/5 10/5 55/9 15/9
ZDOCK1ZRANK-1000 38/5 11/5 60/8 14/8
CLUSPRO 19/8 12/8 48/9 16/9
PATCHDOCK1FIBERDOCK-500 18/4 5/4 32/4 11/4
PATCHDOCK1FIBERDOCK-1000 17/3 5/3 28/3 10/3

Suffix of 1000 for example, means that the re-ranking was applied to top 1000 models from rigid docking.

Table IV
Comparison on the ZLAB 3.0 Benchmark Set of 124 Targets

Method

Interface RMSD Fraction of native contacts

Number of hits
in top 10/top1

Number of targets
solved in top 10/top1

Number of hits
in top 10/top1

Number of targets
solved in top 10/top1

DOCK/PIE Rigid Docking 73/10 38/10 144/14 59/14
DOCK/PIERR Re-rank with PISA 86/17 40/17 167/28 66/28
DOCK/PIERR Re-rank with C1 107/19 50/19 190/32 72/32
DOCK/PIERR Re-rank with C2 107/19 50/19 194/30 72/30
DOCK/PIERR Re-rank with C3 102/15 46/15 175/23 63/23
CLUSPRO 63/19 50/19 172/31 69/31
ZDOCK 143/13 29/13 276/22 45/22
ZDOCK1ZRANK 96/12 23/12 208/26 50/26
PATCHDOCK1FIBERDOCK 21/2 15/2 56/4 33/4

The number of hits counts all acceptable predictions. Some of the targets can have multiple successful predictions, and all of these hits are counted in the entry

‘‘Number of hits.’’ A target is considered solved when at least one prediction is in the top 1 or top 10 set. Only one hit per target is counted under ‘‘Number of targets

solved.’’ See text for more details.
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Results on the learning set

We report in Table VIII, the performance of DOCK/

PIE and various flavors of DOCK/PIERR on the learning

set of 640 complexes.

We observe that the combination potentials generally

perform better than the atomic potential, PISA alone, on

all three datasets. Besides, Table VIII suggests that the

atomic potential PISA seems to recover more hits in the

top 10 than the residue potential in DOCK/PIE. But it is

not as sensitive as the residue potential in DOCK/PIE

when it comes to solving more targets in the top 10, or

top 1. In other words, the atomic potential developed

here is more useful for enriching the decoy set than for

sensitive prediction of hits from a small set of models.

Atomic potentials may be more sensitive to noise in

the learning set. One source of noise in learning is the

use of unbound complexes. In unbound docking, the

input receptor and ligand chains are modeled from their

homologs, and are not structurally identical to the recep-

tor and ligand, respectively, in the bound structure. In

order to test this hypothesis that atomic potentials per-

form better on bound complexes than unbound, we

compared the performance of DOCK/PIE rigid docking

with the PIE potential, that includes residue based and

van der Waals terms, with DOCK/PIERR re-ranking with

the atomic potential. The results in Table IX show that

this hypothesis is not supported, since the atomic poten-

tial PISA has a higher percentage of solved targets for the

unbound complexes than for the bound complexes. The

atomic potential is also better than the residue potential

on the unbound complexes. Hence we still do not know

what makes atomic potentials less sensitive.

Residue potentials are possibly more robust and are

better able to capture enough of the overall structural

features to recognize near-natives from a small set of

models. Hence we use potentials that combine atomic

and residue scores, hoping that they will be more robust,

correlate well with RMSD, and enrich hits in the decoy

set.

Approximate run times for DOCK/PIERR for different

protein sizes are shown in Table X. We estimate that

other software packages we compared to in the present

study are faster than DOCK/PIERR by a factor of about

Table VI
Hits in the Top 10 and Top 1 for Each Target of the Novel Dataset

Targets

Number of irmsd hits in the top 10/top 1 for various docking software

D/P Rigid D/P PISA D/P C1 D/P C2 D/P C3 ZD ZR 2000 ZR 1000 CL PF 500 PF 1000

2xt4 3/1 4/0 4/1 3/1 4/1 1/0 1/0 1/0 1/0 0/0 0/0
2xty 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3agx 3/1 3/1 3/1 3/1 3/1 7/1 6/1 7/1 1/1 4/1 4/1
3asy 2/0 3/1 4/0 3/0 3/0 0/0 0/0 0/0 0/0 0/0 0/0
3gt6 1/0 2/1 2/0 2/0 1/0 2/1 4/1 4/1 1/0 0/0 0/0
3lis 4/1 5/1 5/1 4/1 4/1 4/1 8/1 9/1 3/1 6/1 5/1
3m7f 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3mxj 1/0 0/0 1/1 1/0 1/1 0/0 1/1 1/1 2/1 0/0 0/0
3nfy 3/1 3/1 3/0 3/1 4/1 7/1 6/1 6/1 2/1 1/1 1/0
3oa9 1/1 4/0 3/1 2/1 2/1 7/1 2/0 3/0 1/1 0/0 0/0
3p2q 1/1 1/1 1/1 1/1 1/1 4/1 3/0 3/0 2/1 6/1 6/1
3pc6 2/1 1/0 1/0 2/1 2/1 1/1 0/0 0/0 0/0 0/0 0/0
3pge 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3pra 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3r8c 1/1 0/0 0/0 1/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0
3rd6 3/1 3/1 3/1 3/1 3/1 0/0 0/0 0/0 0/0 0/0 0/0
3rkc 2/0 1/0 3/0 3/1 3/1 1/0 1/0 1/0 1/0 1/0 0/0
3t43 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3te8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3u80 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3umz 6/0 3/0 5/0 6/0 6/0 1/1 2/0 2/0 1/0 0/0 0/0
3vc8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
2wfx 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3d65 2/0 0/0 1/0 2/0 2/0 0/0 0/0 0/0 3/1 0/0 0/0
3di3 2/1 0/0 2/0 3/0 3/0 4/1 0/0 0/0 0/0 0/0 1/0
3hct 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/0 0/0 0/0 0/0
3jrq 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3l1z 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3m18 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3nbp 0/0 0/0 0/0 1/0 1/0 0/0 0/0 0/0 1/1 0/0 0/0

Hits correspond to models with less than 4 Å iRMSD. The abbreviations used are as follows: D/P Rigid: DOCK/PIE. D/P PISA: DOCK/PIE re-rank with PISA. D/P CX:

DOCK/PIE re-rank with combination potential CX. ZD: ZDOCK, CL: CLUSPRO. The suffix [N] suggests that the re-ranking was applied to the top N models from

rigid docking. ZR [N]: ZDOCK1ZRANK with ZRANK re-ranking applied to top N models from ZDOCK, PF [N]: PATHDOCK1FIBERDOCK with FIBERDOCK

applied on top N models from PATCHDOCK.
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10. So far we have focused our attention on getting

higher accuracy and we did not focus on speed. ZDOCK

is using essentially the same algorithm as DOCK/PIERR

(FFT) so we are hopeful that appropriate optimization

could be found. For example, DOCK/PIERR uses at

present, double precision floating point number in FFT

calculations while ZDOCK uses only single precision

numbers.

Analysis of the new atomic potential

The complete set of parameters for the atomic poten-

tial and code for calculating energy of a structure is avail-

able on the web at http://www.ices.utexas.edu/web/dock_

details.html.

On solving the linear program obtained from inequal-

ities generated from the learning set, we can calculate for

each target in the learning set, the percentage of inequal-

ities of that target that were not satisfied by the linear

programming solution. Figure 4 shows the distribution

of violations among targets in the learning set. Only the

200 targets with the maximum percentage of violated

inequalities are shown, as the rest of the targets have a

negligible number of violations. We observe that there

are a relatively small number of targets that contribute a

large number of violated constraints.

Some targets can be especially hard to dock if they

have a very small number of native interface contacts.

We show in Figure 5, the correlation between the number

of native contacts in the target and the percentage of

inequalities that were violated for that target. It is

observed that the targets with low number of contacts

have a high percentage of violated inequalities.

To assess the extent of redundancy among the inequal-

ities in the linear program, we calculated the cosine of

the angle between any two inequality vectors (the vectors

are a function of a and d and of the form

½nmisdockedða; dÞ � nnear�nativeða; dÞ�) and obtained the dis-

tribution of the cosine values. We did this for three differ-

ent samples of inequality vector pairs sampled at random

from the inequalities in our linear program: 1500, 2500,

and 3500 pairs of inequalities. Figure 6 shows the distribu-

tion of cosine values, peaked around 0.0, which shows that

a significant percentage of inequalities were orthogonal to

each other. This suggests that most of the constraints offer

new information and are independent of each other.

Atomic and residue potentials on refined and
unrefined models

Here we explore the performance of atomic potentials

on rigid docking models, as opposed to refined models.

Figure 3
Structures produced by three different groups on complexes in the

novel set. A: Native structure of 3hct (in blue) along with the best

model produced for this complex, by ZDOCK1ZRANK (in cyan).
Since the chains are unbound–unbound there is a slight deviation

between the receptor chains in the native and model. B: Native

structure of 3d65 (in purple) along with the best model for this

enzyme–inhibitor complex by Cluspro (in raspberry). The receptor

enzyme completely overlaps in this case. C: Native structure of 3asy (in

brick red) superposed with the best model by DOCK/PIERR (in

yellow). D: Native structure of 3rd6 (in dark green) superposed with

the best model by DOCK/PIERR (in lemon yellow). DOCK/PIERR was

the only method that could obtain a hit in the top 10 for the targets in

(C) and (D).

Table VII
Comparison of Number of Hits (Interface RMSD Less Than 4 Å) in the

Top 1000 Models Returned by ZDOCK and DOCK/PIE Rigid Docking

Target DOCK/PIE hits in top 1000 ZDOCK hits in top 1000

2xt4 58 26
2xty 0 0
3agx 3 24
3asy 19 9
3gt6 5 11
3lis 17 20
3m7f 0 0
3mxj 7 2
3nfy 21 31
3oa9 24 76
3p2q 3 17
3pc6 20 7
3pge 0 0
3pra 2 0
3r8c 11 6
3rd6 20 0
3rkc 33 9
3t43 7 5
3te8 0 0
3u80 0 0
3umz 61 29
3vc8 1 0
2wfx 0 0
3d65 41 35
3di3 20 17
3hct 0 2
3jrq 4 6
3l1z 6 0
3m18 11 0
3nbp 4 1
Average 13.27 11.1
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If we could obtain the same performance of atomic

potentials on rigid docking models as on refined models,

then the extra computational expense of side chain

refinement and minimization of one thousand models

for each target can be avoided.

In Figure 7, we illustrate that the atomic potential

PISA works best when the parameters of the potential are

learnt on refined models and applied to refined models.

The atomic potential has a better recognition capacity if

trained and tested on refined models than when trained

and tested on the rigid docking models. Interestingly, the

PISA potential trained and tested on unrefined structures

is much worse than residue-based rigid docking. Finally,

the potential, PIE, with residue-based terms, performs

worse when tested on refined structures, than when

tested on unrefined structures. This is probably because

it was trained on unrefined structures. The advantage of

the unrefined structures is that they are more rapid to

generate and consider.

Examining hit cutoffs and distance bins for
the atomic potential

Tables XI–XIV show numerical experiments on differ-

ent definitions of near-native and misdocked conforma-

tions and different distance bins for the ZLAB bench-

mark and training sets. All these different variations of

the atomic potential were learnt on the training set and

tested for performance on the ZLAB set. The best per-

forming definition on the ZLAB set was chosen for the

actual potential, PISA.

Table IX
Comparison of DOCK/PIE and DOCK/PIERR on 462 Bound and 178 Unbound Complexes in the Learning Set

Type of complexes
in dataset Method

Interface RMSD

Number of hits
in top 10/top 1

Percentage of targets
solved in top 10/top 1

Bound DOCK/PIE Rigid Docking 957/278 74.1/60.4
Bound DOCK/PIERR Re-rank with PISA 915/228 69.5/49.5
Unbound DOCK/PIE Rigid Docking 689/98 71/55.6
Unbound DOCK/PIERR Re-rank with PISA 849/106 78.9/60.2

Table X
Approximate Run-Times for DOCK/PIERR for Different Protein Sizes

Receptor length
(number of residues)

Ligand length
(number of residues)

Approximate run
time in hours

105 105 1.25
202 200 1.5
418 152 4.75
272 174 5.75
554 400 9

This includes the time for rigid docking as well as refinement and re-ranking. All

runs were on four nodes of a Linux cluster with eight cores each (32 cores total).

Each core was an Intel Xeon X5460 processor with clock speed of 3.16 GHz. The

memory size was 16 GB for each node.

Table VIII
Comparison of DOCK/PIE and DOCK/PIERR on the Learning Set of 640 Complexes

Method

Interface RMSD Fraction of native contacts

Number of hits
in top 10/top 1

Number of targets
solved in top 10/top 1

Number of hits
in top 10/top 1

Number of targets
solved in top 10/top 1

DOCK/PIE Rigid Docking 1646/376 466/376 2152/400 503/400
DOCK/PIERR Re-rank with PISA 1764/334 459/334 2197/365 494/365
DOCK/PIERR Re-rank with C1 2028/410 482/410 2486/433 508/433
DOCK/PIERR Re-rank with C2 2024/411 477/411 2483/435 507/435
DOCK/PIERR Re-rank with C3 2003/413 487/413 2487/430 520/430

Figure 4
Percentage of violated inequalities for 200 targets of the learning set.

The rest of targets are not shown as they have a negligible number of

violated inequalities.
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Models were classified as near-native if they had inter-

face RMSDs lower than the hit cutoff and were classified

as misdocked models if they had an RMSD higher than

the misdocked model cutoff. Near-native cutoffs of 4 Å

and 2.5 Å were tried and misdocked model cutoff of 5.0,

6.0, and 7.0 A were tried and we chose near-native cutoff

of 2.5 Å and misdocked model cutoff of 7 Å.

We also experimented with different distance bins for

the pairwise atomic potential, PISA. We show that the

distance bin 2–3.5; 3.5–5; 5–8 Å works best. Incidentally,

these are also the distance bins used for detecting ap-

proximate structures for threading.29

Performance in CAPRI evaluations

Early versions of DOCK/PIERR and DOCK/PIE meth-

ods that are different from the program reported here

have been tested by participation in the CAPRI evalua-

tions. In the recent Round 26, there were two targets,

T53 and T54. T53 was a protein–protein complex

between artificial alpha repeat proteins REP4 and REP2.

We produced one medium hit and four acceptable hits in

the top 10 in the scoring round for T53, but did not

produce an acceptable structure prediction of our own.

Ours was one of nine groups and eight groups, out of

13, to get at least one medium hit and acceptable hit

respectively, in the scoring round for T53. However other

Figure 5
Percentage of violated inequalities per learning set target plotted against

the number of contacts for the target.

Figure 6
Probability distribution of cosine values for 1500, 2500, and 3500 pairs

of inequalities sampled at random from the set of linear inequalities.

Figure 7
Comparison of performance of atomic potential PISA on refined and

unrefined models. The histogram shows for each of the docking

methods, the number of ZLAB targets in our test set that had a hit

with interface RMSD less than 2.5 Å, in the top 10 models.

Abbreviations are explained as follows: RD: rigid docking, U: unrefined,

R: unrefined. PISA-R-U for example, means that the re-ranking

potential was PISA, which was learnt on refined learning set models

and tested on unrefined ZLAB structures.

Table XI
Comparison of Different Cutoffs for Near-Native or Misdocked

Complexes on the ZLAB Benchmark of 124 Complexes

Cutoff for near-natives and
misdocked models Interface RMSD

Near-native
cutoff in A

Misdocked
model

cutoff in A

Number of
hits in top
10/top1

Number of targets
solved in
top 10/top1

2.5 7.0 86/17 40/17
4.0 7.0 81/15 39/15
2.5 6.0 86/16 39/16
2.5 5.0 82/15 38/15
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groups fared better in the prediction round for T53, with

17 out of 42 groups getting an acceptable model, nine

out of 42 groups getting a medium model, and one

group getting a high accuracy model. Whereas T54 was a

complex between engineered neocarzinostatin and

another alpha repeat protein, REP16. We did not pro-

duce any hits in the prediction or scoring round here.

This target was also found to be a hard target by other

groups, since no group was able to get an acceptable or

better model in the scoring round for T54, and only four

out of 41 groups got an acceptable model in the predic-

tion round.

In Round 24 (the intermediate Round 25 was can-

celled), there were two targets, T50 and T51. T50 was a

complex of the influenza hemagglutinin bound to a

designed protein. For T50, we produced one acceptable

and two medium models in the server prediction, two

acceptable and one medium models in the human pre-

diction, and two acceptable models in the scoring round.

Fourteen and nine other groups, out of 40, got medium

and acceptable models in the prediction round for T50.

Ten and six other groups out of 19 groups got an accept-

able or medium model, respectively, in the scoring round

for T50. T51 was a multi-domain protein for which we

did not get any correct models in any of the rounds.

Only 3 of 35 prediction groups and 5 of 13 scorer groups

got an acceptable model for this target.

In Round 23, the targets were T47, T48, and T49. T47

was a protein–protein complex that mainly involved pre-

diction of the interface water molecules and we did not

participate in it. T48 and T49 were the same protein–

protein complex starting from two different unbound

structures. They involved the binding of a hetero-hex-

amer hydroxylase to ferredoxin. For T48, we had 1 and 2

acceptable predictions for the server and human predic-

tion rounds, respectively. Fifteen out of 32 groups in all

submitted acceptable or better models for T48. For T49,

we had one acceptable prediction for the server predic-

tion round. Fifteen out of 33 groups had an acceptable

or better model for this target. The scoring for both

these targets was combined, and we did not produce any

acceptable model in the scoring round. Eight out of 13

scorers had produced acceptable or better models in the

scoring round for T48/T49.

Round 22 consisted of only one target, T46, an

unbound–unbound protein–protein complex. We

obtained one acceptable prediction for the scoring round

for this target and no acceptable predictions for the pre-

diction rounds. This was a hard target as only two out of

40 groups produced acceptable models for this target.

Eight out of 16 scorers produced an acceptable model in

the scoring round.

The CAPRI performance is summarized in Table XV.

CONCLUSION

We have introduced an improvement to docking algo-

rithms by introducing a new atomic potential and refine-

ment and ranking algorithms. We show by extensive tests

on three datasets of complexes that our methods outper-

form slightly, other state-of-the-art docking packages. We

also observe that coarse grained potentials are more ro-

bust to noisy structures produced by unbound docking.

Nevertheless, we show that atomic and residue potentials

capture different signals, and hence their combination

works better than either of them individually. However,

the success rate of docking software even after refinement

and improved re-ranking functions is still between 30

and 50%. Since rigid docking is an inexpensive approach

to the problem, it makes sense to try rigid docking first.

Furthermore, examining our training set for unbound

complexes we found that the average TM score between

Table XII
Comparison of Different Cutoffs for Near-Native or Misdocked

Complexes on the Learning Set of 640 Complexes

Cutoff for near-natives and
misdocked models Interface RMSD

Near-native
cutoff in A

Misdocked
model cutoff

in A

Number of
hits in top
10/top1

Number of
targets solved
in top 10/top1

2.5 7.0 1764/334 459/334
4.0 7.0 1424/255 305/255
2.5 6.0 1510/280 414/280
2.5 5.0 1627/292 393/292

Table XIII
Comparison of Different Distance Bins on the ZLAB Benchmark of 124

Complexes

Distance bins used

Interface RMSD

Number of hits
in top 10/top1

Number of targets
solved in top 10/top1

2–3.5; 3.5–5; 5–8 � 86/17 40/17
3.5–5; 5–6.5; 6.5–8 � 86/13 39/13
2–4.5; 4.5–6; 6–8 � 85/13 38/13
2–3; 3–4; 4–5; 5–8 � 83/16 36/16
2–3.5; 3.5–5; 5–8; 8–10 � 84/18 38/18

Table XIV
Comparison of Different Distance Bins on the Learning Set of 640

Complexes

Distance bins used

Interface RMSD

Number of hits
in top 10/top1

Number of targets
solved in top 10/top1

2–3.5; 3.5–5; 5–8 � 1764/334 459/334
3.5–5; 5–6.5; 6.5–8 � 1310/278 367/278
2–4.5; 4.5–6; 6–8 � 1468/295 389/295
2–3; 3–4; 4–5; 5–8 � 1548/272 361/272
2–3.5; 3.5–5; 5–8; 8–10 � 1630/310 404/310
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the templates and the native conformations of the chains

in the complex was high and about 0.89. Such high simi-

larity supports the use of rigid docking. A promising

area seems to be the development of scoring functions

that can recognize near-native models from a small set of

models. One could envision designing multi-body poten-

tials, orientation-based potentials and potentials that are

based on hydrogen bonding interactions to capture more

structural features that can potentially lead to more accu-

rate scoring functions and improve the success of com-

putational docking procedures.
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